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iAbstratInformation extration (IE) methods detet and lassify strutured information inunstrutured data soures, suh as texts and images. Currently, most automatiIE methods are developed with supervised mahine learning algorithms that aretrained on large, manually annotated datasets. The ability of mahine learningalgorithms to ombine omplimentary and ontraditing evidene has provedsuessfully in a wide range of IE tasks. This approah however also su�ers fromtwo important disadvantages. The �rst and most important disadvantage is thatfor every new task, or for every new domain, a new training orpus needs to bemanually annotated. This manual annotation an require the annotation of severalthousands of sentenes or images, whih seriously inreases the ost of developingnovel IE methods. A seond disadvantage is that for omplex IE tasks, even alarge training set will ontain only a fration of all the relevant strutures in thedata, whih an seriously limit the auray of these methods.In this thesis we study weakly supervised learning, where we develop IE methodsthat use only a small set of annotated examples, together with a large set ofunannotated examples to ahieve a high auray. We study two settings: (1)unimodal weakly supervised learning, where annotated texts are augmented witha large orpus of unlabeled texts and (2) multimodal weakly supervised learning,where images or videos are augmented with texts that desribe the ontent of theseimages or videos.In the unimodal setting we study two IE tasks that extrat information from texts.The �rst task, word sense disambiguation (WSD) determines for every word inthe text the meaning of that word, depending on the ontext. The seond task,semanti role labeling (SRL), determines for every verb in the text the semantiframe expressed by that verb and the words in the sentene that are prominentarguments of this verb. The most important ore of our models is a diretedBayesian network.We onsider two families of weakly supervised methods to extend the supervisedmodels. The �rst family of methods are semi-supervised methods, where we learnthe parameters of Bayesian network by employing both labeled and unlabeleddata. For this we use direted Bayesian networks, where the strutures of theunlabeled examples are represented with hidden variables. The values of thesehidden variables are then iteratively estimated by optimizing the preditive qualityof the Bayesian network on the unlabeled examples. We show that this method isnot suitable for IE on texts beause of the violation of the assumptions madeby this approah. We then turn to a di�erent family of weakly supervisedmethods, where we �rst learn an unsupervised model on the unlabeled examples,and use the statistis learned by this model in a supervised mahine learningalgorithm. We develop an unsupervised model, the latent words language model



ii(LWLM), that learns aurate word similarities from a large orpus of unlabeledtexts. We show that this model is a good model of natural language, o�eringbetter preditive quality of unseen texts than previously proposed state-of-the-artlanguage models. In addition, the learned word similarities an be used suessfullyto automatially expand words in the annotated training with synonyms, wherethe orret synonyms are hosen depending on the ontext. We show that thisapproah improves both the WSD and SRL lassi�er. Furthermore the LWLMan be used in a wide range of IE and natural language proessing appliations.The seond part of this thesis disusses weakly supervised learning in a multimodalsetting. We develop IE methods to extrat ertain types of information from textsthat desribe an image or video, and use this extrated information as a weakannotation of the image or video. We start by developing a method to preditwhih entities are present in an image. For this we develop two novel measures.The saliene measure aptures the importane of an entity, depending on theposition of that entity in the disourse and in the sentene. The visualness measureaptures the probability that an entity an be pereived visually. This informationis extrated in a novel way from the existing WordNet database. We show thatombining these measures results in an aurate predition of the entities presentin the image. We then disuss how this model an be used to learn a mappingfrom names in the text to faes in the image, and to retrieve images of a ertainentity.We then turn to the automati annotation of video. We develop an SRL systemthat annotates a video with the visual verbs and their visual arguments, i.e. ationsand arguments that an be observed in the video. The annotations of this systemare suessfully used to train a lassi�er that detets and lassi�es ations in thevideo. A seond system annotates every sene in the video with the loation ofthat sene. This system omprises a multimodal sene ut lassi�er that ombinesinformation from the text and the video, an IE algorithm that extrats possibleloations from the text and a novel way to propagate loation labels from one seneto another, depending the similarity of the senes in the textual and visual domain.All the work performed in this thesis is formally evaluated, by omparing theautomati outputs to the ground truth outputs (in the ase of IE lassi�ers), or,by measuring the perplexity of the model on an unseen test text (in the ase ofthe language models). For several tasks we outperform (e.g. WSD and LWLM) ormath (e.g. SRL) the best state-of-the-art models. For other tasks we are the �rstto formally evaluate our system on these tasks (e.g. annotation of visual entitiesand annotation of loations), setting a ompetitive baseline for further researh.



iiiKort overzihtInformatie extratie (IE) methoden deteteren en lassi�eren gestrutureerdeinformatie in ongestrutureerde bronnen, zoals teksten of afbeeldingen. Momenteelmaken de meeste automatishe IE methoden gebruik van mahine leer algoritmesdie worden getraind op grote, manueel geannoteerde datasets. De bekwaamheidvan mahine leer algoritmes om aanvullende of tegengestelde informatie teombineren is suesvol gebleken voor een grote verzameling van IE taken. Dezeaanpak heeft ehter ook twee grote nadelen. Het eerste en meest belangrijke nadeelis dat voor elke nieuwe taak een nieuw trainingorpus moet worden geannoteerd.Deze manuele annotatie omvat mogelijk duizenden zinnen of afbeeldingen, wat dekost van de ontwikkeling van IE methodes sterk doet rijzen. Een tweede nadeelis dat voor omplexe IE taken, zelfs een grote dataset maar een fratie van allestruturen zal bevatten die herkend moeten worden. Dit kan de nauwkeurigheidvan de IE methodes negatief beïnvloeden.In deze verhandeling bestuderen we zwak gesuperviseerd leren, waarbij aurateIE methodes getraind worden op een kleine verzameling geannoteerde voorbeeldenen een grote verzameling niet geannoteerde voorbeelden. We bestuderen tweegevallen: (1) unimodaal zwak gesuperviseerd leren, waar geannoteerde tekstenworden aangevuld met een grote verzameling niet geannoteerde teksten (2)multimodaal zwak gesuperviseerd leren, waar afbeeldingen of video's wordenaangevuld met teksten die hun inhoud beshrijven.Voor het unimodale geval bestuderen we twee IE taken die informatie uitteksten extraheren. De eerste taak is de disambiguatie van ambigue woordenafhankelijk van de ontext waarin die woorden voorkomen. De tweede taakis het bepalen van het semantishe frame voor elk werkwoord, samen metde belangrijkste semantishe rollen voor dat werkwoord. De IE algoritmenvoor deze twee taken worden ontwikkeld met behulp van gerihte Bayesiaansenetwerken. We beshouwen twee ategorieën van zwak gesuperviseerde methoden.De eerste ategorie zijn semi-gesuperviseerde methoden die de parameters van deBayesiaanse netwerken leren aan de hand van geannoteerde en niet geannoteerdevoorbeelden. In deze netwerken worden de labels van niet geannoteerdevoorbeelden voorgesteld met verborgen variabelen. De waardes van deze variabelenworden iteratief geshat door de voorspellende kwaliteit van het netwerk op de nietgeannoteerde voorbeelden te optimaliseren. We tonen aan dat deze ategorie vanmethodes niet geshikt is voor IE uit tekst, omdat de veronderstellingen die dezemethoden maken niet gelden. Hierna rihten we ons op een tweede ategorie vanzwak gesuperviseerde methoden, waar eerst een ongesuperviseerd model geleerdwordt met niet geannoteerde voorbeelden, en waar dan de statistieken geleerddoor dit model gebruikt worden in een gesuperviseerd mahine leer algoritme. Weontwikkelen een nieuw ongesuperviseerd taalmodel, het latente woord taalmodel(LWTM), dat de gelijkenis tussen woorden leert aan de hand van een verzameling



ivniet geannoteerde teksten. We tonen aan dat dit model met een hoge auraatheidniet eerder geziene teksten kan voorspellen. De geleerde gelijkenissen kunnengebruikt worden om woorden te expanderen met hun synoniemen, welk zowel hetsysteem voor disambiguatie als het systeem voor het ontdekken van semantisherollen verbetert. Bovendien is de gebruikte methode algemeen en kan ze gebruiktworden in een grote verzameling andere IE methoden.Het tweede deel van deze thesis behandelt zwak gesuperviseerd leren voormultimodale datasets. We ontwikkelen IE methoden om bepaalde types vaninformatie te extraheren uit teksten die de inhoud van afbeeldingen of video'sbeshrijven. De geëxtraheerde informatie wordt dan gebruikt als een zwakkeannotatie van de afbeelding of video. We beginnen met het ontwikkelen vaneen methode die voorspelt welke entiteiten in een afbeelding aanwezig zijn aande hand van de tekst die de afbeelding beshrijft. We ontwikkelen hiervoor tweenieuwe heuristieken. De saliene heuristiek modelleert de belangrijkheid van eenentiteit in de tekst, aan de hand van de positie van die entiteit in de gehele teksten in de zin. De visualness heuristiek modelleert de kans dat een entiteit visueelkan worden waargenomen, welke op een nieuwe manier wordt bekomen uit deWordNet database. Deze heuristieken resulteren geombineerd in een nauwkeurigevoorspelling van de aanwezige entiteiten in de afbeelding. We tonen ook hoe ditmodel gebruikt kan worden om de orrespondentie te leren tussen namen in detekst en gezihten in de afbeelding, en om te zoeken naar afbeeldingen met eenbepaalde entiteit.We breiden deze aanpak uit naar de annotatie van video's. We ontwikkeleneen systeem voor het deteteren van visuele semantishe rollen van visuelewerkwoorden, i.e. aties en argument die geobserveerd kunnen worden in de video.De automatish ontdekte aties en argumenten worden hierna gebruikt om eensysteem te trainen dat deze atie en argument automatish ontdekt in een video.Een tweede uitbreiding is de automatishe annotatie van loaties van senes inde video. Dit systeem ombineert informatie uit de tekst en de video om devideo onder te verdelen in senes, en een IE algoritme om loaties uit de tekst teextraheren. We ontwikkelen ook een nieuwe manier om loatie labels te propagerenvan één sene naar een andere, afhankelijk van de similariteit van de senes in hettekstuele en visuele domein.Al de ontwikkelde systemen in deze verhandeling werden formeel geëvalueerd, doorofwel de automatishe uitvoer te vergelijken met de manuele annotatie (voor IEmethodes), of door de waarshijnlijkheid van een nieuwe tekst volgens het modelte meten (voor de taalmodellen). Voor vershillende taken behalen we betere(e.g. woord disambiguatie en latent woord taalmodel) of gelijklopende resultaten(e.g. semantishe rol labelen) dan de beste state-of-the-art systemen. Voor anderetaken zijn we de eersten die deze resultaten voor deze taken formeel evalueren (e.g.annotatie van visuele entiteiten en annotatie van loaties) en zetten we hiermeeeen ompetitieve standaard voor toekomstig onderzoek.
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viiFormal notationReurring mathematial symbols used throughout the text:
BN = (Nodes,Arcs) Bayesian network onsisting of olletion of nodes Nodesand a olletion of ars Arcs

Nodes nodes in a Bayesian network
Arcs ars in a Bayesian network
Nodei node i

Domi domain of node i

Funci probability mass funtion of node i

V ali value of node i

wtrain training text
Nt length training text
wtest test text
Nu length test text
wheldout heldout text
Nh length heldout text
DA annotated text
DU text that has not been annotated
K number of features
wi word at position i

Ftri all features of word at position i

Ftrji features for word i given verb at position j

F trk
i k-th feature of word at position i

F trk
ji k-th feature for word i given verb at position j

Li label of word at position i

θ generi symbol for parameters of a model



viii
θsemi parameters of a model learned with semi-supervised learning
θA parameters of a model learned with supervised learning
L(DA; θ) likelihood of annotated data given parameters
Synseti synset for word on position i.
Predj prediate of word at position j

rji role for word i relative to the verb at position j

rj all roles for the verb at position j

Lj = (Predj , rj) labeling for prediate j , i.e. the label Predj of the prediateand the labels rj of all roles
w

i
i−n+1 n-gram [wi−n+1, ..., wi]

hi hidden word at position i

c(wi
i−n+1) ounts of the n-gram w

i
i−n+1 in the training orpus

d(c(wi
i−n+1))disount fator for ounts c(wi

i−n+1)

δ(wi−1
i−n) dynami interpolation fator

π(wi−1wi) the number of ontext the bigram wi−1wi ours in
C olletion of all ounts from all n-gram in the training orpus
γ olletion of all smoothing parameters
α(hi

i−n+1) forward values for n-gram h
i
i−n+1

β(hi
i−n+1) bakward values for n-gram h

i
i−n+1

γ(hi
i−n+1, hj) forward values for n-gram h

i
i−n+1 and hidden value hj

V voabulary



ixAbbreviationsReurring abbreviations used throughout the text, in alphabetial order:ADKN absolute disounted Kneser-Ney smoothingBN Bayesian networkHMM hidden Markov modelIP interpolated smoothingLDA latent Dirihlet alloationLWLM latent words language modelME maximum entropyMEMM maximum entropy Markov modelNB naive Bayespmf probability mass funtionPOS part-of-speeh tagRDKN relative disounted Kneser-Ney smoothingSRL semanti role labelingWSD word sense disambiguation
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Chapter 1Outline�Nothing lears up a ase so muh as stating it to another person.�The Memoirs of Sherlok Holmes (1893)In this hapter we introdue the main topis of this thesis. We �rst disuss the �eldof natural language proessing (setion 1.1) and the �eld of information extration(setion 1.2). In setion 1.3 we will see how information extration algorithmstoday are mostly developed with mahine learning methods. This approah hashowever some disadvantages that an be solved with weakly supervised learning.Finally we outline the struture of this thesis in setion 1.4.1.1 Natural language proessingThis thesis is situated in the �eld of natural language proessing (NLP), whih wede�ne asDe�nition 1.1 Natural language proessingThe automati analysis, transformation and generation of natural language textsusing omputer algorithms.As we will see in the following hapters we will mainly be interested in the analysisof natural language. To put this in a larger ontext, we are atually interestedin using an automati analysis of natural language to solve a spei� information3



4 OUTLINEneed of a spei� end-user. Natural language proessing is only a small part ofthe full proess of solving an information need. An idealized desription of suh aproess is:1. An end-user has a spei� information need that an possibly be satis�edby the use of automated natural language proessing from natural languagetexts.2. A person familiar with NLP analyzes this information need and spei�es aformal task de�nition and a desription of the task orpus.3. A NLP expert designs and implements a omputer algorithm to arry out,up to a ertain auray, the de�ned task on the given orpus.4. The omputer algorithm is run on the entire task orpus, produingautomati outputs for all texts.Although this desription is very general, it helps to outline the topi of this thesis.We perform a study of step 3: the design of omputer algorithms for the automatianalysis of natural language text. We thus generally assume that the task de�nitionand orpus are known beforehand. Only on a small number of oasions we willaddress the other steps involved in this proess.1.2 Information extrationNatural language proessing is a broad disipline that omprises many di�erenttasks. We will only be interested in one of these sub-tasks, information extration(IE). Although this term is ommonly used to refer to a number of related tasks,it does not have a ommonly agreed de�nition. In this thesis we use the followingde�nition:De�nition 1.2 Information extrationThe extration of a prede�ned struture in natural language using omputeralgorithms, where elements in the struture have a mapping to individual words orphrases in the text.The elements that distinguish information extration from the more generalnatural language proessing are prede�ned struture and mapping to individualwords or phrases. A di�erent view on information extration states that aprede�ned struture with a number of slots is given, and that the goal of anIE method is to �nd the positions where this struture is present in the text and



AUTOMATIC INFORMATION EXTRACTION METHODS 5to �nd the elements, suh as words, phrases or sentenes that �ll one or more ofthe slots.In this thesis we perform experiments with a number of di�erent informationextration tasks. Two methods, word sense disambiguation (hapter 3) andsemanti role labeling (hapter 4), are used frequently throughout this thesis andallow us to ompare the di�erent methods that are developed on a �xed task andorpus.1.3 Automati information extration methodsOur de�nition of information extration states that a omputer algorithm is usedto perform an automati analysis of texts. It does not state however how thisalgorithm is designed. In this setion we outline some of the methods that havehistorially been used in IE algorithms.1.3.1 Historial overviewPerforming an automati analysis of text has been a goal of arti�ial intelligeneresearhers from the very beginning of omputer siene (Jurafsky and Martin,2008). The �rst extensively studied information extration task is without doubtsyntati sentene parsing, that tries to disover the struture of a senteneaording to a prede�ned grammar. Researh on this topi started blossomingat the end of the 1950's and beginning of the 1960's with the study of formallanguage theory, generative syntax and automati parsing algorithms. Theseearly parsing algorithms (e.g Harris (1962)) used pattern mathing and keywordsearh ombined with simple heuristis for reasoning. By the end of the 1960'smore formal logial systems were developed: Colmerauer (1970) de�ned a totalpreedene ontext free grammar and used the logi programming language Prologto implement a deterministi sentene parser. Kay (1980) and Pereira andWarren (1983), used an improved parsing algorithm (hart parsing, a dynamiprogramming algorithm) but were still limited to deterministi algorithms. Animportant disadvantage of these methods is that for an ambiguous sentene,multiple parses are found without any indiation of whih parse is more likely.Another suessful example at the time is the SHRDLU program developed byWinograd (1972). The program showed the possibilities of natural languageproessing for human-omputer interation, allowing the user to give ommandsto a omputer program using omplex sentenes. It ombined a sentene parser, amemory of the previous interations, and a method for disambiguating ambiguousterms depending on the ontext. It however relied on a simple deterministi (Lisp)



6 OUTLINEimplementation and it was not lear how this method ould be extended for usagein a broader, more realisti domain.A small number of information extration tasks other than syntati parsing werestudied during this time, suh automati pronoun resolution (Hobbs, 1977) anddisourse modeling (Grosz et al., 1977). Also here deterministi programs withsome simple heuristis were used.An important shift in methods used for information extration ourred with theintrodution of large annotated orpora, suh as the Penn Treebank (Maruset al., 1994), the Penn Disourse Treebank (Miltsakaki et al., 2004) and theTimeBank (Pustejovsky et al., 2003). These orpora made it possible to usestohasti methods, whih had already been suessfully applied to other problems,suh as optial harater reognition (Bledsoe and Browning, 1959) and speehanalysis (Jelinek et al., 1975; Baker, 1975). The beginning of the 20th enturysaw a wide appliation of mahine learning methods, suh as support vetormahines (Boser et al., 1992; Vapnik, 1995), maximum entropy mahines (Bergeret al., 1996) and graphial Bayesian models (Pearl and Shafer, 1988). The neworpora also allowed a omparison of di�erent information extration algorithms onidential test-orpora, a trend that further intensi�ed with the advent of workshopsthat perform a double-blind omparison of di�erent systems on an idential testorpus. Examples of these workshops are the Message Understanding Conferenes1(Grishman and Sundheim, 1996) on the detetion of various types of events,the Automati Context Extration2 (Doddington et al., 2004) workshops on thedetetion of entities, relations and events, the Senseval3 (Kilgarri�, 1998) andrelated SemEval workshops on word sense disambiguation, semanti role labeling,identi�ation of logi forms, metonymy resolution and other information extrationtasks, and the shared tasks of the Conferene on Computational Natural LanguageLearning4 (Stevenson and Carreras, 2009), on lause identi�ation, named entityreognition, semanti role labeling and dependeny parsing.1.3.2 Mahine learning methodsToday mahine learning algorithms are the dominant method to develop informa-tion extration algorithms. A mahine learning algorithm is a omputer programthat automatially onstruts (parts of) the information extration algorithm onthe basis of an annotated training set. The training set is a olletion of naturallanguage texts that are annotated with the target output strutures. Usually amahine learning method aims to minimize a given error measure that quanti�esthe di�erene between the automati onstruted outputs and the manual outputs.1http://www.s.nyu.edu/s/faulty/grishman/mu6.html2http://www.itl.nist.gov/iad/mig/tests/ae/3http://www.senseval.org/4http://www.nts.ua.a.be/onll2010/



AUTOMATIC INFORMATION EXTRACTION METHODS 7Many di�erent mahine learning methods have been developed and applied oninformation extration methods, we refer to (Manning and Shütze, 2002; Jurafskyand Martin, 2008) for extensive overviews. In this thesis we fous on mahinelearning methods that are based on graphial Bayesian models. These models usea graphial representation to represent dependenies between di�erent variables,allowing for the onstrution of omplex models whih an easily be used for weaklysupervised and unsupervised learning. We will disuss graphial Bayesian modelsat length in hapter 2.1.3.3 Weakly supervised learningA major disadvantage of mahine learning methods is the large training set thatis neessary to learn aurate automati information extration algorithms. ThePropBank training orpus for semanti role labeling for example, ontains 113.000verbs for whih all semanti roles have been manually annotated. A orpus of thissize is neessary for most information extration methods sine natural language isvery varied and mahine learning methods thus need to learn a mapping for a largenumber of di�erent inputs. Furthermore, the labour intensive task of reating anannotated training orpus needs to be repeated for every information extrationtask, or when a spei� information extration method needs to be applied on aorpus in a di�erent language or domain. This requirement greatly inreases theosts for the development of IE algorithms, both in terms of time and money.A solution to this problem is the use of weakly supervised mahine learningmethods. We de�ne these methods asDe�nition 1.3 Weakly supervised mahine learning methodsWeakly supervised mahine learning methods are mahine learning methods thatuse a labeled together with an unlabeled orpus to train information extrationmethods.Today, large eletroni olletions of texts in various languages and domains existand an typially be obtained at a relative small ost. The most important goal ofthis thesis is the development of weakly supervised algorithms that allow to reateinformation extration algorithms with a small annotated training orpus. Ideally,one would need to speify only a handful of examples for a given informationextration task to reate an automati omputer algorithm that an solve the taskup to a high level of auray.In this thesis we onsider two types of weakly supervised learning. The �rst type isuni-modal weakly supervised learning, where we augment a small set of annotatedtexts with a large orpus of unlabeled texts, and use these to improve aurayof information extration methods and redue the dependeny of these methods



8 OUTLINEon large annotated orpora. The seond type is multimodal weakly supervisedlearning, where we use supervised information extration methods to automatigenerate desriptions of the ontent of images and video. These desriptions arethen used to train methods that perform an automati analysis of these images orvideo. This researh is motivated by the observation that frequently, the di�ultiesfaed by automati methods for image analysis are even greater then these faedby natural language proessing methods, beause of the large variations in sale,lighting onditions and relative orientation of entities in images.1.4 Outline thesisWe have introdued the major topis of our researh and now desribe the strutureof this text. This thesis is divided in three main parts that disuss respetivelysupervised information extration, uni-modal weakly supervised informationextration and multimodal weakly supervised image annotation.Before diving in the �rst part of this text we start in hapter 2 by desribingbasi onepts and tehniques used throughout this work. We give an extensiveintrodution to direted Bayesian networks, whih will be used to develop allour supervised, weakly supervised and unsupervised models. This hapter willalso desribe in more detail how information extration methods are typiallydeveloped, and give a number of examples of popular information extrationmethods that will help to situate the information extration tasks takled in thisthesis.In part I we disuss supervised information extration methods. This partexplains in detail how the texts that need to be labeled are onverted to a featurerepresentation, how this representation is inluded in a direted Bayesian networkand how this network is used to generate an automati labeling. We will apply thisapproah to two spei� information extration tasks. Chapter 3 disusses wordsense disambiguation, where we develop a supervised method to determine themeaning of a word depending of the ontext of that word and hapter 4 disussessemanti role labeling where we develop a supervised method for the automatidetetion and lassi�ation of the prominent arguments of a verb.In part II we disuss uni-modal weakly supervised learning, where we investigatetraining methods that ombine a labeled training set with an unlabeled set totrain aurate information extration methods without relying on large hand-tagged orpora. In hapter 5 we disuss a traditional approah to this problem:semi-supervised learning. This approah uses a single Bayesian network thatto represent both labeled and unlabeled examples. The missing labels of theunlabeled examples are iteratively estimated using Markov hain Monte Carlosampling tehniques. We will see that this approah relies on a spei� set of



OUTLINE THESIS 9assumptions, and how a violation of these assumptions redues the performaneof the �nal model.We then turn to a di�erent approah to weakly supervised learning: use a fullyunsupervised model to learn statistis or strutures from a large unlabeled orpusand use these statistis or strutures in a supervised lassi�er. We develop thelatent words language model in hapter 6, whih is a novel unsupervised modelthat learns word similarities from a large set of unlabeled examples. Thesesimilarities are learned to optimize the preditive auray of this model of unseentexts, and an be suessfully used in supervised information extration methods.We demonstrate this in hapter 7 by expanding the supervised models used forword sense disambiguation and semanti role labeling with the learned similarities.We also see in this hapter that this method ompares favorably to other weaklysupervised methods proposed for semanti role labeling.In part III we turn to the ase of multimodal weakly supervised learning. In thispart we disuss methods that employ information extration methods to aid theautomati analysis of images and video. In hapter 8 we develop the appearanemodel whih �nds the entities present in an image by analyzing a text desribingthis image. This model is subsequently used in two appliations, to align namesin the text with faes in the image, and to perform textual image retrieval.Chapter 9 deals with the automati annotation of video. We �rst fous on theautomati annotation of ations of ators in the video, and apply the previouslydeveloped semanti role labeling system to the transripts of an video series. Ina seond task we ombine information extrated from the transript with anautomati analysis of the video to disover the di�erent senes in a video, andto derive the loation for every sene.We onlude this thesis in hapter 10, where we summarize the work that wasperformed, the lessons that were learned in the proess, and promising diretionsfor future researh.





Chapter 2Foundations�Arti�ial intelligene has done well in tightly onstrained domains. Winograd[...℄ astonished everyone with the expertise of his bloks-world natural language.Extending this kind of ability to larger worlds has not proved straight- forward,however... The time has ome to treat the problems involved as entral issues�Patrik H. Winston (1976)In this hapter we introdue the basi onepts and tehniques used throughoutthis thesis. We start by desribing a number of important information extrationtasks in setion 2.1. These examples will help to situate the information extrationtasks takled later in this thesis. We then proeed by giving an extensiveintrodution to direted Bayesian networks in setion 2.2. This framework wasused in all our models and we will desribe how it desribes a probabilitydistribution over a olletion of variables and how it an be used for mahinelearning.2.1 Information extration tasksIn the previous hapter we have desribed information extration (IE) as the taskof extrating a prede�ned struture in natural language using omputer algorithms.In this setion we make this desription more onrete by desribing some popularinformation extration tasks (setion 2.1.1) and by desribing the typial proessof developing an information extration method (setion 2.1.2).11
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Word sense disambiguation :

Named entity recognition :
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Part-of-speech tagging :
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Figure 2.1: Example information extration tasks: word sense disambiguation,named entity reognition and part-of-speeh tagging.2.1.1 Important information extration tasksWe have previously desribed how historially syntati sentene parsing was the�rst extensively studied IE task. Today a lot of researh is still performed onparsing, but other IE tasks are also being extensively researhed, of whih wedesribe some in this setion. This will help to highlight the shared points in thesedi�erent tasks and will help to situate the IE tasks studied in this thesis.Word sense disambiguation The task of word sense disambiguation is to segmenta text and to assign a label to every noun phrase, (non-auxiliary) verb phrase,adjetive and adverb in a text. This label indiates the meaning for that partiularword and is hosen from a ditionary of meanings for a large number of di�erentphrases. For example, in �gure 2.1 the word �got� has been assigned the labelget.04 from the WordNet lexial database, indiating that �got� in this ontextmeans �reeive, obtain, inur�.Named entity reognition Named entity reognition detets names and numbersin a text and lassi�es these aording to a small set of labels, usually inludingperson, organization, loation and date. In �gure 2.1 both �Davis� and�George Bush� are person names and �Saturday� is a date.Part-of-speeh tagging This IE task assigns a syntati label to every word in asentene. These syntati labels re�et the grammatial ategory of every word in
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Syntactic sentence parsing :

Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . 
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Semantic role labeling :

Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . 
A1 AM-LOCA0

receive.01

A1A0

get.01

Figure 2.2: Example information extration tasks: syntati sentene parsing andsemanti role labeling.the given sentene. In �gure 2.1 for example the word �Davis� is assigned �NNP�,�reeived� is assigned �VBD� and �votes� �NNS�.Syntati sentene parsing1 In syntati sentene parsing the omputer programdetermines the grammatial struture of a given sentene. Depending on thegrammar, this often omes down to �nding the syntati tree for a partiularsentene. The words in the sentene are leafs in this tree and internal nodes ofthe tree are phrases with a syntati label, i.e. np for noun phrase or vp forverb phrase. In �gure 2.2 the sentene has been parsed using the Penn Treebankonstitueny grammar (Marus et al., 1994). It indiates, among others, the part-of-speeh tag for every word (e.g. nnp for �Davis�, vdb for �reeived�) and thestruture of the sentene: two independent lauses onneted by the onjuntion�and�.1In our desription of information extration we do not distinguish between an analysis thatfouses on the semantis, i.e. the meaning of words or phrases, an analysis that fouses on thesyntati properties of natural language or an analysis that fouses on the disourse of a partiulartext. In our experiene these di�erent tasks re�et di�erent goals but are very often solved withidential, or very similar tehniques. Furthermore there are many tasks (e.g. semanti rolelabeling, see hapter 4) that straddle these di�erent ategories.



14 FOUNDATIONSSemanti role labeling Semanti role labeling (SRL) annotates every non-auxiliary verb in a sentene with a struture alled a semanti frame. A semantiframe onsists of a prediate label that indiates the meaning of the verb, and anumber of semanti roles. A semanti role is a label for a phrase in the senteneindiating that this phrase is an argument to that verb. In �gure 2.2 for examplethe verb �reeived� has prediate label reeive.01 with meaning �get,gain� andsemanti roles �Davis� with label a0 (reeiver), �1119 votes� with label a1 (thingreeived) and �in Saturday's eletion� with label am-lo (loation). Note thatthe prediate label get.01 for the verb �get� is di�erent from the synset labelget.04 (�gure 2.1) sine they are labels from two ompletely unrelated databases(i.e. PropBank and WordNet).In this thesis we study word sense disambiguation (WSD) and semanti rolelabeling (SRL). These two tasks highlight di�erent di�ulties for informationextration tasks. The output of WSD is a single label for every word and thedi�ulty of this task lies mainly in the orret seletion of the label, where labelshave �ne-grained distintions in meaning that have to be determined from theontext. WSD methods thus often fous on reating an aurate model of theontext and on methods that are able to learn from only a small number ofexamples per word sense. SRL in ontrast involves seleting a label for a phrasefrom a very small number of labels. Contrary, the di�ulty here lies in the fatthat these labels need to be strutured in a semanti frame, and that a single wordan be used simultaneously in di�erent strutures.2.1.2 Developing information extration methodsTwo points in the design of automati information extration methods havegenerally been the fous of attention: feature extration and seleting anappropriate mahine learning method.2.1.2.1 Feature extratingThe desribed information extration tasks are generally very easy to performby humans but are extremely hard for omputer programs. One of the mainreasons is the representation used to store texts. Where humans have an intuitiveunderstanding whih texts express similar events, the omputer stores texts aslinear sequenes of haraters, where texts with a similar meaning an haveompletely di�erent representations, or where only a small hange to the haratersan drastially alter the meaning.For this reason one of the most important steps in developing informationextration methods is the mapping of the initial representation of texts to a



DIRECTED BAYESIAN NETWORKS 15representation that is more useful to the task at hand. This step is usually referredto as feature extration, and it involves the reation of a set of deterministirules that look for ertain patterns (e.g. su�xes) in the text. Often one usesthe output of one information extration method to reate features for a seondmethod. We will for example use the output of a part-of-speeh tagger in ourword sense disambiguation and semanti role labeling methods. One the textsare onverted to the feature representation, they are passed to a mahine learningmethod.2.1.2.2 Mahine learning methodsThe task of a mahine learning method is to ombine the di�erent values ofthe various features into a single predition of the value of the label for thatword or phrase. Many di�erent mahine learning methods have been appliedwith suess to information extration, suh as support vetor mahines (Pradhanet al., 2004), neural networks (Collobert and Weston, 2008) k-nearest neighbourlassi�ers (Morante et al., 2008) deision trees (MCarthy and Lehnert, 1995) orlogisti regression (Snow et al., 2005). In this thesis we limit ourselves to a mahinelearning method based on direted Bayesian networks. This framework is amongthe most popular methods for information extration, and it an easily be extendedto semi-supervised and unsupervised learning, a fat that is used extensively inthe following hapters.2.2 Direted Bayesian networksIn this setion we introdue the framework that is used to develop informationextration algorithms throughout this thesis: direted Bayesian networks. We willformally desribe these models (setion 2.2.1) and see how we an use them ina mahine learning setting (setion 2.2.2). Finally we present a famous type ofBayesian networks, hidden Markov models (setion 2.2.3), whih will be used atseveral oasions in this thesis.We only give an introdution to the aspets of Bayesian networks that are relevantto the presented work, for a more omplete treatment we refer to Bishop (2006).2.2.1 Desription of graphial Bayesian networksA Bayesian network is a direted ayli graph that represents probabilisti de-pendenies between random variables. A Bayesian network BN = (Nodes,Arcs)onsists of a olletion of nodes Nodes = [Node1...NodeN ] and a olletion of
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rain

sprinklerwetFigure 2.3: Simple Bayesian networkars Arcs = [Arc1...ArcM ]. Every node Nodei = (V ali, Domi, Funci) representsa random variable that an hold a value V ali ∈ Domi from the domain of thatnode and a probability mass funtion Funci that gives a probability distributionon the domain Domi, given the values of the parent of this node. Throughout thistext we will use both variable and node to denote the same onept, a node inthe Bayesian network, and often we will use Nodei = x as shorthand for V ali = xwhere x ∈ Domi.The olletion of ars Arcs of the network apture the dependenies between thenodes in the Bayesian network. Arci = (Nodej , Nodek) indiates a direted linkfrom Nodej to Nodek. By de�nition, the model represents a fatorization of thejoint probability of all random variables.De�nition 2.4 The probability distribution of a direted Bayesian network BN =
(Nodes,Arcs) is given by

P (Node1, ..., NodeN ) =

N
∏

i=1

P (Nodei |Parents(Nodei))where Parents(Nodei) denotes the parents of node Nodei

Parents(Nodei) = {Nodej|(Nodej , Nodei) ∈ Arcs}The fat that BN's are direted ayli graphs, ensures that this deompositionexists and is unique. As an example we onsider the small Bayesian network in�gure 2.3. This network has three nodes rainy, sprinkler, and wet and three ars
{(rainy, sprinkler), (rainy, wet), (sprinkler, wet)}, and it represents whether theoutlook is rainy (yes/no), whether the sprinkler was turned on last night (yes/no)and whether the lawn is wet (yes/no). The probability distribution of this networkhas the deomposition
P (rainy, sprinkler,wet) = P (wet|rainy, sprinkler) × P (sprinkler|rainy) × P (rainy)Some networks will have many variables, for instane one variable for every wordin a sentene w = [w1...wN ] (�gure 2.4a). To represent these networks moreompatly, we only draw one representative node wn and surround this node with
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K(b) With plate notationFigure 2.4: Plate notation for Bayesian networksa box, alled a plate, labeled with K indiating that there are K nodes of thiskind (�gure 2.4b).Another onvention that is used in this work, is that when drawing Bayesiannetworks, a variable of whih the value is known (i.e. observed) is indiated with ashaded irle, and a variable that has an unknown (i.e. hidden or unobserved) valueis indiated with an empty irle. In �gures 2.4a and 2.4b the nodes indiating thewords wk are set to a ertain value and are indiated with shaded irles, whilethe value of Label is unknown and indiated with an empty irle.Probability mass funtions The Bayesian network tells us how to deompose aprobability distribution of the network into probability mass funtions (pmf 's) ofsingle nodes2. It however doesn't speify the form of these probability funtions.A pmf is de�ned byDe�nition 2.5 A probability mass funtion is a funtion Funci(x)

Funci(x) : Domi → [0, 1] : V ali → P (V ali = x)with the onstraints that P (V ali = x) ≥ 0 and ∑x∈Domi
P (V ali = x) = 1.Examples of frequently used pmf's are the Bernoulli distribution, the Binomialdistribution and the Poisson distribution.Categorial distribution The probability mass funtion that will be used mostoften throughout this work is the ategorial distribution, whih is also referred toin literature as a multinomial distribution (e.g. Blei et al. (2003)), although thesedistributions are in fat only equivalent if the number of trials of the multinomial2Note that we limit ourselves to disrete probability funtions, for the more general ase, seefor instane (Bishop, 2006).



18 FOUNDATIONSdistribution is 1. The parameters of the ategorial distribution is a vetor ofvalues [p1...pN ], one for every of the N values in Domi, with the onstraints that
0 ≤ pj ≤ 1 and ∑N

j=1 pj = 1. The distribution is then given by a mapping fromevery value xj ∈ Domi to the probability pj of observing this value.
Funci(x) : Domi → [0, 1] : x → pjOther distributions used in this thesis (e.g. the Dirihlet distribution) will beintrodued when they are used in a partiular information extration method.Conditional probability distributions Often we are interested how the probabilitymass funtion hanges depending on the values of the parents of that node, e.g.we want to model the onditional probability distribution.Let us take for example the node sprinkler in �gure 2.3. We ould use two di�erentategorial pmf's for this node, one (e.g [0.02, 0.98]) for when its parent node rainhas value yes and one (e.g. [0.30, 0.70]) for when the value of rain is no, re�etingthe fat that only few people use their sprinklers when the outlook is rainy whilemore people use them when it is not rainy.In the general ase, we have to onsider nodes that have multiple parents. We anhoose a similar strategy as for the single parent node, where we use a di�erent pmffor every possible ombination of values of the parent nodes. E.g. in the example,we ould use 4 di�erent ategorial pmf's to model the distribution of wet giventhe 4 ombinations of values of rainy and sprinkler. A serious disadvantage ofthis approah is that usually we want to learn the parameters of these di�erentfuntions from training examples, and that a di�erent funtion for every possibleombination of values leads to an explosion of parameters. For this reason wewill often use a smarter approah: in setion 6.1 we interpolate ategorial pmf'sfor di�erent ontexts in language modeling, and in setion 4.4 we use exponentialmodels to ombine information from many features in a disriminative model.2.2.2 Mahine learning with Bayesian networksThe goal of a supervised mahine learning method is to learn, from a set of Nmanually annotated sentenes DA = [(w1, L1)...(wN , LN )], a mapping from asentene wi to the label Li. In reality every sentene wi is �rst transformed toa feature vetor Ftri = [Ftr1

i , ..., F trK
i ], where every feature desribes a spei�property of the words in the sentene. Generally, the feature vetor ontains

1 if that property is present and a 0 if the property is not present. We useBayesian networks in this thesis and reate networks that ontain variables forboth the features and for the labels to be reognized. The struture of the



DIRECTED BAYESIAN NETWORKS 19Bayesian network then spei�es the probabilisti dependenies between thesevariables. In this setion we will see some onepts that are important with regardto Bayesian networks in a mahine learning setting: the maximum likelihoodestimate, the maximum probability estimate and the di�erene between generativeand disriminative Bayesian networks.Maximum likelihood estimate During the training phase, we learn the param-eters of our network from a set of labeled examples DA = [(w1, L1)...(wN , LN )].This training set ontains N annotated examples that are assumed to beindependent and identially distributed. We use θ to denote the parameters ofthe Bayesian network, whih is the union of the parameters of the probabilitymass funtions of all the nodes in the network. A number of methods an beused to estimate these parameters, generally distinguishing between methods thatassume or do not assume a prior distribution on the parameters, and betweenmethods that �nd a single maximum estimate of the parameters or that model theentire posterior distribution for the parameters. We will usually use the maximumlikelihood estimate (MLE), whih does not assume a prior distribution and �nds asingle maximum for the parameters. We de�ne the likelihood funtion as:
L(DA|θ) =

N
∏

i=1

P (wi,Ftri|θ)We then �nd the parameters θ suh that this funtion has a maximal value. Thisestimate is guaranteed to produe an optimal lassi�er for this network, givena 0-1 loss funtion (DeGroot, 1970) (1) if the number of examples is su�ientlylarge and (2) if it is possible to �nd parameters θ suh that the parametrized jointlikelihood of sentenes and labellings P (wi, Li|θ) equals the true joint likelihood
P (wi, Li), or more informally, if the model is �orret�. This is expressed in thefollowing assumptionAssumption 2.1 Corret model assumptionWe an �nd parameters θ suh that P (wi, Li|θ) = P (wi, Li).In our appliations both assumptions will generally be violated to some extent,but for supervised models, assumption (1) is generally more important. Sine thenumber of samples is always limited, the maximum likelihood estimate might havesome unwanted properties, suh as assigning zero probability to events that werenever observed in the training set. For this reason we will usually modify the MLE,using a prior distribution (e.g. hapter 9) or smoothing tehniques (e.g. setion4.3.2). Although assumption (2) is less important for supervised models, we willsee in hapter 5 that for semi-supervised models this assumption is ritial.
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N(b) disriminativeFigure 2.5: Example of a generative and disriminative Bayesian networkMaximum probability estimate After determining the parameters of the Bayesiannetwork, we an use the model to analyze previously unseen texts. For a giventext we �nd the set of values for the unobserved variables (e.g. the labels) suhthat the joint probability of these variables and of the observed variables (e.g. thewords or features) is maximal. A naive approah to �nd this maximum is to try allpossible ombinations of variables, whih is generally not feasible beause of theexponential number of possible ombinations. For networks that an be dividedin overlapping subnetworks, one an employ a dynami programming algorithmwhih is guaranteed to �nd a global optimal solution (Bellman and Dreyfus, 1962).For other networks one an use a beam searh that performs a breadth-�rst searhbut only keeps the most likely solutions in every step. This method has thedisadvantage that it is not guaranteed to �nd a global optimal solution.Generative and disriminative models The number of di�erent Bayesiannetworks that an be de�ned is only limited by the reativity of the humanmind. However, many tasks have a ommon setting where a set of observedvariables represent the input, and a set of hidden variables represent the labelsthat need to be assigned to this input. In an information extration setting forinstane, we will represent the texts to be analyzed with a number of features
Ftri = [Ftr1

i , ..., F trK
i ] derived from the word wi, suh as the lemma, pre�x orsu�x. The (unknown) labels Li are hidden variables that are assigned to everyword wi. Two possible models to represent the dependenies between the hiddenand observed variables are shown in �gures 2.5a and 2.5b.The �rst model is a generative model, speifying a joint probability distributionover observations (features) and hidden states (labels), or less preise, try to�explain both labels and features�. Usually generative networks employ the naiveBayes assumption, where all features are onsidered independent given the valueof the label. The probability distribution of this network is given by
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P (Li,Ftri) = P (Li) ×

K
∏

k=1

P (Ftrk
i |Li)The probability of the labels given the di�erent observed features is

P (Li|Ftri) =
P (Li) ×

∏K

k=1 P (Ftrk
i |Li)

∏K
k=1 P (Ftrk

i )sine ∏K

k=1 P (Ftrk
i ) is independent of the label, we get

P (Li|Ftri) ∼ P (Li) ×
K
∏

k=1

P (Ftrk
i |Li)A disriminative Bayesian network is shown in �gure 2.5b. This network spei�es aonditional probability over the hidden states, or less preise, tries only to �explainthe labels�. The probability distribution of this network is given by

P (Li,Ftri) = P (Li|Ftri) × K
∏

k=1

P (Ftrk
i )These models do not model P (Ftri), sine the features are always given, and thus

P (Li,Ftri) ∼ P (Li|Ftri) (2.1)This onditional pmf needs to ombine information from many features, whih anfor example be modeled with an exponential distribution (Ratnaparkhi, 1998).When omparing the performane of generative and disriminative models, one anompare the asymptoti error, i.e. the error of the model with an unlimited numberof labeled examples, and the variane, i.e. the variane of the error when only alimited number of labeled examples is given. Generative models generally usethe naive Bayes assumption, onsidering all features independent given the valueof the label, and thus make strong modeling assumptions. For this reason theirfeatures an be estimated with a small number of training examples, leading to alow variane with a limited training set. The independene assumption howeverdoes usually not hold in pratie, whih leads to a systemati modeling error evenwhen a large number of labeled examples is observed. Disriminative models withan exponential distribution do generally not have this disadvantage, and will thusgenerally have a lower asymptoti error. They do however need to model the more
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1(b) MEMMFigure 2.6: Hidden Markov model (HMM) and maximum entropy Markov(MEMM) model.omplex onditional distribution in equation 2.1, requiring more training examples.For more information we refer to Bouhard and Triggs (2004) and Ng and Jordan(2002).For information extration, disriminative models are usually superior (e.g. forword sense disambiguation (Tratz et al., 2007) or semanti role labeling (Limet al., 2004)), whih is why they are employed here. We will however also onsidergenerative models beause of the ease with whih they an be used for semi-supervised learning (hapter 5).2.2.3 Hidden Markov modelsOne of the more well-known Bayesian networks are hidden Markov models. HiddenMarkov models were �rst used for speeh reognition (Baum et al., 1970; Baker,1975) but have then found a large number of appliations, suh as natural languagemodeling (Manning and Shütze, 2002), harater reognition (Nag et al., 1986),part-of-speeh tagging (Churh, 1988; Cutting et al., 1992) and named entityreognition (Bikel et al., 1999). These models have a ommon struture, shownin �gure 2.6. The network onsists of a sequene of observed states together witha number of hidden states, and the hidden states are assumed to be dependenton one or more previous hidden states. For example, for speeh reognition, theobserved states are the spetral vetors of the sound signal during a short periodof time and the hidden states are the phonemes or phones, or for part-of-speehtagging the observed states are the words in a text (or features derived from thesewords) and the hidden states are the part-of-speeh tags.Figure 2.6 shows a HMM where a hidden state hi has only a onditionaldependeny with the previous state, a so-alled �rst order HMM. Sometimeshowever, it an be advantageous to take a larger history into aount. This givesrise to seond order HMM's, where every hidden state is onditionally dependenton the two previous states, or to a third order HMM where every hidden state



DIRECTED BAYESIAN NETWORKS 23is onditionally dependent on the three previous states. Enlarging the historydramatially inreases the number of parameters in a model, sine the number ofparameters is exponential in the number of hidden states. For example, a seondorder HMM for a part-of-speeh tagger with 25 tags will have more than 15625parameters. We will see in setion 6.1 appropriate smoothing methods to overomethe problem of sparseness that are often assoiated with models with large numbersof parameters.One of the nie properties of HMM's is that e�ient algorithms exist for trainingand inferene. When the hidden states are annotated in the training set (suhas for instane when training a supervised part-of-speeh tagger), the maximumlikelihood parameters of the model an be found trivially in a losed form solution.Also when one tries to learn the hidden states in an unsupervised manner, andthey have not been annotated in the training set, one an use an e�ient EM-algorithm alled the Baum-Welh algorithm (Baum et al., 1970). We will disussthis algorithm in detail in setion 6.2.2.Also to �nd the most likely values for the hidden variables given a sequene ofobserved variables, an e�ient algorithm exists, the Viterbi algorithm (Viterbi,1967). This algorithm will �nd the globally maximal sequene of states in a timeomplexity that is linear in the length of the sequene, and quadrati (for a �rst-order HMM) or ubi (for a seond-order HMM) in the number of possible valuesfor the hidden states.HMM are by de�nition generative models, and a number of disriminativemodels with similar struture and properties have been de�ned, inludingmaximum entropy Markov models (Ratnaparkhi, 1996) and onditional random�elds (La�erty et al., 2001). Although these models have been found to havesuperior performane on a number of information extration tasks, suh as part-of-speeh tagging (La�erty et al., 2001) and named entity reognition (MCallumand Li, 2003), they require signi�antly more omplex methods for training, andan not easily be extended to inlude hidden variables for semi-supervised training.
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26Outline part I : Supervised information extrationIn this part we study the supervised approah to information extration, whihhas been the dominant approah to information extration in the last deade. We�rst extrat a set of features from the word or phrase being labeled, and then usea mahine learning method to selet he most likely label for this word or phrase.This mahine learning method is trained on a large number of manually annotatedexamples.When developing a novel information extration method, the major fous is onseleting the right types of features and on seleting an appropriate mahinelearning method. In the framework of direted Bayesian networks this omesdown to seleting an appropriate struture of the Bayesian network and seletinggood probability mass funtions. We will demonstrate these tehniques on twoinformation extration tasks: in hapter 3 we develop a model for word sensedisambiguation where the ontext is modeled with a large number of features, andin hapter 4 we develop a model for semanti role labeling where we need tomodel the syntati role of a word and the relationship between that word to theverb. For both models we will ompare a disriminative and a generative Bayesiannetwork.The work in this part of the thesis has been partially published in the followingartiles. Parts of this researh have not been previously published.- Koen Deshaht and Marie-Franine Moens. E�ient Hierarhial EntityClassi�ation Using Conditional Random Fields. In proeedings of the 2ndWorkshop on Ontology Learning and Population, Sydney, 2006.- Koen Deshaht and Marie-Franine Moens. Using the Latent WordsLanguage Model for Semi-Supervised Semanti Role Labeling. In proeedingsof the 2009 Conferene on Empirial Methods in Natural LanguageProessing (EMNLP 2009), Singapore, August 7, 2009A ondensed form of the �rst artile was also presented at the 2006 BNAIConferene:- Koen Deshaht and Marie-Franine Moens. E�ient Hierarhial EntityClassi�ation Using Conditional Random Fields, 18th Belgian-Duth Con-ferene on Arti�ial Intelligene, Namur, 2006.



Chapter 3Supervised word sensedisambiguationIn this hapter we desribe word sense disambiguation, the task of seleting theright sense of a word depending on the ontext. We introdue this task in setion3.1, and outline the database of word senses and the training and test orpus usedin setion 3.2. We then develop an automati method for this task where a numberof features to model the ontext are used in a generative or disriminative Bayesiannetwork in setion 3.3. We evaluate these models in setion 3.4 and onlude thishapter in setion 3.5.3.1 IntrodutionA word an have di�erent meanings depending on the ontext. Take for examplethe following sentene�The bark sails out of the bay and prepares its annons for theimpending �ght.�This sentene ontains a number of ambiguous words, suh as �bark� (whih anmean �sailing ship�, �overing of a tree� or �sound made by a dog�), �sails� (�pieesof fabri to propel a sailing vessel� or �to travel on water propelled by wind�),�annons� (�heavy artillery guns� or �lower parts of the leg in hoofed mammals�)and ��ght� (�battle� or �boxing or wrestling math�). Although humans anintuitively determine the meanings of the words in this sentene, this is muh moreomplex for omputer algorithms. Word sense disambiguation (WSD) is usually27



28 SUPERVISED WORD SENSE DISAMBIGUATIONde�ned as the task of seleting, from a ditionary of possible senses for a partiularword, the right sense for a partiular word in a partiular ontext. Generally, oneassumes that syntati disambiguation an suessfully be performed with a part-of-speeh tagger and that WSD an fous on distinguishing senses among wordsbelonging to the same syntati ategory, e.g. �nding the orret meaning of �bark�,given that it's a noun.Word sense disambiguation is an important part of natural language proessing,sine it is a subtask for many tasks, suh as mahine translation, informationretrieval, syntati parsing, et. The �rst researh on word sense disambiguationan also be traed to systems that performed mahine translation (Weaver, 1955).Sine then many WSD systems have been developed, we refer to Ide and Véronis(1998) for an overview. Generally one an distinguish three approahes to WSD,a symboli approah, a knowledge-driven approah and a data-driven approah.Symboli methods for WSD were usually embedded in larger systems intendedfor full language understanding. An example is the work by Masterman (1957)who developed a semanti network to derive representations of sentenes in aninterlingua. In the knowledge-driven approah an external knowledge soure isused to �nd the meaning of a partiular word in a ertain ontext. A popularknowledge-driven method is for instane to ompare the ditionary entries for apartiular word with the ditionary entries for words surrounding this word, andselet the entry that has the largest number of overlapping words with the entriesof surrounding words (Lesk, 1986). In a data-driven approah, all ambiguous wordsin a olletion of texts are annotated with the orret sense. A mahine learningapproah an then be used to learn a lassi�er for the orret model of the ontextfor a partiular sense. An example of early work using this approah is Blak(1988).Today arguably the best omparisons of di�erent WSD systems are the Senseval(Snyder and Palmer, 2004) and SemEval (Pradhan et al., 2007) workshops, wherethe top ranking systems use mahine learning methods that employ large numbersof features extrated from the ontext (e.g. Tratz et al. (2007)). These featurestypially apture ontextual information (e.g. words surrounding the urrentword), syntati information (e.g. subjet, objet) and semanti information (e.g.named entities types in the ontext).3.2 WordNetWe use the WordNet ditionary of senses, whih is arguably the most ommonlyused database for word sense disambiguation. This allows us to ompare our workwith the best performing systems from the SemEval workshop (Pradhan et al.,2007).
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Figure 3.1: Fragment of the WordNet hypernym/hyponym tree3.2.1 DesriptionWordNet (Fellbaum, 1998) is a lexial database that organizes English nouns, verbsand adjetives in synsets. A synset is a olletion of words that are synonyms, orthat are losely related and that represent a single onept or entity. An exampleof suh a synset is �person, individual, someone, somebody, mortal, soul�, referringto a human being. The 155.327 words in WordNet (v2.1) are organized in 117.597synsets. Additionally, WordNet de�nes a number of relations between synsets,suh as the holonym, meronym, pertainym, and the important hypernym relation.A word X is a hypernym of a word Y if Y is a subtype or instane of X . Forexample, �bird� is a hypernym of �penguin�. This relation organizes the synsets ina hierarhial tree of whih a fragment is pitured in �g. 3.1.For a given word, we an list all the synsets that ontain this word. The task ofWSD using WordNet thus omes down to seleting the orret synset out of allpossible synsets for a partiular word.3.2.2 Training and test orpusWe used the Semor orpus (Fellbaum, 1998; Landes et al., 1998) for training. Thisorpus, whih was reated at the Prineton University, is a subset of the EnglishBrown orpus ontaining almost 700,000 words. Every sentene in the orpus ishunked into noun and verb phrases. The hunks are tagged by part-of-speeh andboth noun and verb phrases are tagged with their WordNet sense. To be able toompare our system with other systems, we use the test data from the Senseval3workshop (Snyder and Palmer, 2004), whih has been preproessed in a similarmanner.



30 SUPERVISED WORD SENSE DISAMBIGUATION3.2.3 Evaluation metriWe evaluate our system with the o�ial sorer of the Senseval3 workshop1. Thissorer measures the auray of the assigned labels, i.e.
acc =

Ncorr

Nuwhere Ncorr is the number of phrases that is assigned the orret label and Nu isthe total number of phrases in the test set.3.3 Supervised WSD modelsIn this setion we disuss the models we have developed for WSD. We �rst disussthe features employed (setion 3.3.1), and then disuss a generative (setion 3.3.2)and a disriminative model (setion 3.3.3).3.3.1 FeaturesThe features used in our system for WSD are mainly based on Tratz et al. (2007).Contextual information The ontextual information we use onsists of theword lemmas on either side of the word, within a ertain window and withinsentene boundaries. Lemmatisation of words, i.e. mapping a word to itsanonial form (e.g. �runs�→�run�, �is�→�be�), is performed by an automatiprogram, part of the WordNet pakage2.Syntati information We parse the sentenes in their grammatial strutureusing an automati parser (Nivre et al., 2006) and inlude grammatialdependenies (e.g. subjet, objet) and morpho-syntati features suh aspart-of-speeh, ase, number and tense. Features are extrated for all tokensfor whih the distane to the word to be disambiguated is smaller then 4ars in the dependeny tree.Semanti information We inorporate named entity types (e.g. person,loation, organization). We use OpenNLP and LingPipe to identifynamed entities, replaing the strings identi�ed as named entities with theorresponding entity type. We also replae numbers in the text with thetype label number.1Available from http://www.senseval.org/senseval3/soring2Available from http://wordnet.prineton.edu/
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i and Synseti, representing the features and the synsetof a partiular word wi. Categorial pmf's are assoiated with the Synseti nodeand with every individual Ftrk

i node respetively. The probability distribution ofthe network is given by
P (Synseti,Ftri) = P (Synseti) ×

K
∏

k=1

P (Ftrk
i |Synseti)This model is a generative model that assumes that all features are independent,given the synset of the word. The parameters of the ategorial distributionsare determined using the maximum likelihood estimate, smoothed with a �xedonstant. For example, we estimate P (Ftrk

i |Synseti) as
P (Ftrk

i |Synseti) =
c(Ftrk

i , Synseti) + α

c(Synseti) + αKwhere c(Ftrk
i , Synseti) is the number of times the feature Ftrk

i is present inthe training set for a word with synset Synseti, c(Synseti) is the number ofourrenes of Synseti in the training set, α is a positive smoothing onstant and
K is the number of unique features.



32 SUPERVISED WORD SENSE DISAMBIGUATIONmodel nouns verbs adjetives allgenerative 57.98 56.43 50.78 55.15disriminative 65.12 68.15 54.10 66.32Table 3.1: Results for the generative and disriminative models for WSD on theSenseval3 test set in terms of % auray.3.3.3 Disriminative WSD modelWe ompare the generative model with a disriminative model, shown in �gure3.2b. Although the network has the same nodes, the diretion of the dependenyis reversed. The probability distribution is given by
P (Synseti,Ftri) = P (Synseti|Ftri) × K

∏

k=1

P (Ftrk
i )

∼ P (Synseti|Ftri)We model the pmf of P (Synseti|Ftri) as an exponential distribution, of whih theparameters are estimated aording to the maximum entropy priniple. Sine thereis no losed form solution to �nd this maximum we turn to an iterative method.In this work we use generalized iterative saling3, although other maximizationmethods an also be used. Although the maximization method used will have littlein�uene on the �nal results, more advaned methods (suh as (quasi-) Newtonoptimization) often have a muh lower time omplexity. The pmf of the featuresis not modeled, sine these probabilities do not in�uene the relative onditionalprobabilities of the labels.3.4 Evaluation of supervised WSD modelsFor the generative and disriminative models desribed above we selet, from the
5 di�erent types of features desribed above the ombination with a maximal soreon a held out set4. For the generative model this is the ombination of featuresContextual information and Syntati information and for the disriminativemodel the ombination Contextual information, Syntati information, Seman-ti information and Hypernyms. This is in aordane to the ommon observation3We use the maxent pakage available on http://maxent.soureforge.net/4To selet the best features we train the model on 90% of the Semor orpus and use 10% toompute the auray of the model for a ertain ombination of features.



CONCLUSIONS OF THIS CHAPTER 33that disriminative models are more suessful in ombining larger number offeatures ompared to generative models. The reason for this is that generativemodels assume that features are onditionally independent, and a larger numberof di�erent types of features are more likely to apture dependenies that violatethis assumption.We then train the model on the Semor orpus and evaluate on the Senseval3orpus. We see from the results in table 3.1 that the disriminative modeloutperforms the generative model, with more than 10% di�erene in auray.Both models perform best for verbs and nouns, and �nd disambiguation ofadjetives partiularly hard. This is a trend that is observed for most word sensedisambiguation systems. Comparing our results to others, we see that our aurayis state-of-the-art, slightly higher (Deadt et al., 2004; Kohomban and Lee, 2005;Mihalea and Faruque, 2004) or lower (Tratz et al., 2007) than others.It is intriguing that no systems seems to ahieve more than 70% auray onthis dataset. The reason for this is the very �ne-grained distintions in meaningbetween di�erent WordNet senses. Take for example the noun �man�. This nounhas 11 di�erent senses, of whih three are �the generi use of the word to refer toany human being�, �all of the living human inhabitants of the earth� and �any livingor extint member of the family Hominidae haraterized by superior intelligene,artiulate speeh, and eret arriage�. It is lear that in a given text, seletingthe orret synsets from this set is a non-trivial task, even for humans. For thisreason some people have proposed to merge WordNet synsets that are very lose inmeaning, reating so-alled super-senses, whih allow automati systems to ahievemuh higher auraies. We have not pursued this approah here.3.5 Conlusions of this hapterWe have presented a supervised approah to word sense disambiguation. We usea number of features to model the ontext of a partiular word within a ertainwindow, where we use the words in the ontext, syntati information, namedentities and hypernyms of the words ourring in this window. These features wereused in two supervised lassi�ers, a generative and a disriminative lassi�er. Forboth lassi�ers we found the optimal ombination of features, and notied that thedisriminative model ould ombine a larger number of non-independent features,whih an be explained by the independene assumption made by generativemodels. Upon evaluation on the test set we found that the disriminative modeloutperforms the generative model, and that its performane is very lose to thestate-of-the-art.





Chapter 4Supervised semanti rolelabelingIn this hapter we address the seond information extration task that will serve asa benhmark of the herein proposed information extration methods: semanti rolelabeling (SRL). This information extration task has a long history in linguistis,whih we will brie�y disuss in setion 4.1. We use the PropBank de�nitions ofsemanti roles, whih we introdue in setion 4.2, and in setion 4.3 we disuss thefeatures and the two models that are used to takle this task. We evaluate thesemodels in setion 4.4 and onlude this hapter in setion 4.5.4.1 BakgroundSemanti roles and semanti frames have a long tradition in linguistis (Fillmore,1968; Gruber, 1970) where semanti frames are often de�ned as sript-likestrutures of ommon ations or situations and semanti roles as typialpartiipants of, or arguments for, these ations or situations. Historially, semantiframes were proposed as a fundamental building blok used by people to organizetheir memory and oneive the world, e.g. Shank and Abelson (1977).Today, semanti role labels are usually interpreted as annotations of senteneonstituents (e.g. noun phrases) that lassify the meaning of the onstituentwith regard to a verb in the sentene (e.g. by assigning a label to parts ofthe sentene that answers �who�, �where�, �when�, ... for a partiular verb).The term semanti frame is used to refer to the semanti roles for a partiularverb together with a lassi�ation of the verb aording to a set of prede�ned35



36 SUPERVISED SEMANTIC ROLE LABELINGmeanings. This provides an analysis of the sentene that an be situated betweena grammatial (e.g. syntati sentene parsing) and semanti analysis (e.g. wordsense disambiguation), and o�ers a semanti struture that generalizes arossdi�erent syntati alternations of expressing idential ontent (Palmer et al.,2005). These strutures have been used in a wide range of appliations, suhas in deteting and �lling templates from texts that desribe market �utuations(Surdeanu et al., 2003), seleting orret answers to natural language questions(Narayanan and Harabagiu, 2004; Shen and Lapata, 2007), reating a shortsummary of a set of douments (Melli et al., 2005), translating texts from onelanguage to another (Boas, 2002) deteting subjetive verbs and their arguments(Bethard et al., 2004) and automati text-to-sene onversion for tra� aidentreports (Johansson et al., 2005).A number of olletions of semanti roles have been de�ned, di�ering in underlyingtheoretial assumptions and goals. Three popular olletions are FrameNet (Bakeret al., 1998), VerbNet (Levin, 1993) and PropBank (Palmer et al., 2005). Analternative approah to semanti role labeling is the framework developed byHalliday (1994) and implemented by De Busser et al. (2002) and Mehay et al.(2005). PropBank has thus far reeived the most attention of the NLP ommunity,and is used in our work.4.2 PropBank4.2.1 DesriptionThe PropBank projet (Palmer et al., 2005) de�nes for a large olletion of verbs aset of prediates that re�et the di�erent senses of the verb. The prediates of theverb �run� for example inlude run.01 �operate, proeed�, run.02 �walk quikly�and run.03 �ost�. Every prediate label has a number of roles, where label A0is assigned to the most prominent argument in the sentene (A1 for unausativeverbs) and labels A1 to A5 are assigned to other salient arguments for that verb(Merlo and van der Plas, 2009). Table 4.1 lists the semanti roles for a seletionof verb senses. Although roles are de�ned for every prediate separately, in realityroles with idential names tend to be syntatially and semantially similar forall prediates, a fat that is exploited to train aurate role lassi�ers. A smallnumber of arguments is shared among all senses of all verbs, suh as temporals(AM-TMP), loatives (AM-LOC ) and diretionals (AM-DIR).Additional to the frame de�nitions, PropBank has annotated a large trainingorpus ontaining approximately 113.000 annotated verbs. An example of anannotated sentene is



PROPBANK 37role run.01 debate.01 shoot.02A0 operator debater shooterA1 mahine, proedure thing disussed orpseA2 employer person debated against gunA3 o-worker - loation of woundA4 instrumental - -Table 4.1: Semanti roles in PropBank for a seletion of verb senses: run.01�operate, proeed�, debate.01 �to disuss� and shoot.02 �kill with a gun�.[John A0℄ [breaks break.01℄ [the window A1℄ [with a rok A2℄.Here break.01 is the �rst sense of the verb �break� with meaning �ause to notbe whole�. John has the semanti role A0 �the breaker�, �the window� has role
A1 �thing broken� and �with a rok� has role A2 �instrument�. The semanti rolelabeling is preserved aross di�erent syntati realizations. In, for instane, theannotated sentene � [The window A1℄ [broke break.01℄.�, �the window� has a di�erentsyntati position but is also assigned role A1. Although we will in generally talkabout labeling semanti roles, our systems also perform, and are evaluated on,identi�ation of the orret prediate label for the verb (see setion 4.2.3).A sentene with multiple verbs has a separate role labeling for every verb. In forexample the sentene�Big investment banks refused to step up to the plate.��Big investment banks� is labeled as A0 �entity refusing� for the verb �refused� andas A1 �thing moving� for the verb �step�. Note that semanti role labeling systemstypially assume that a frame is fully expressed in a single sentene and thus donot try to instantiate roles aross sentene boundaries.4.2.2 CorpusWe perform our experiments on a standard orpus for semanti role labeling, usedin the CoNLL 2008 shared task (Surdeanu et al., 2008)1. The sentenes in theorpus are mainly taken from news texts in the English language from the WallStreet Journal (from the Penn Treebank orpus (Marus et al., 1994)) and a smallseletion of English texts from 15 di�erent soures, inluding news texts, non-�tional and �tional stories and book reviews (from the Brown orpus (Franis,1Although the CoNLL 2008 shared task evaluated semanti role labeling on both verb andnoun phrases, we limit ourselves to semanti role labeling on verbs.



38 SUPERVISED SEMANTIC ROLE LABELING1964)). The orpus is split into three disjoint parts, for training (39279 sentenes),testing2 (2824 sentenes) and a held-out setion (1334 sentenes). The manualannotations of the sentenes are the annotations from the PropBank orpus, butare onverted from labels for onstituents to labels for head words. For example,the annotated text � [John A0℄ [breaks break.01℄ [the window A1℄ [with a rok A2℄.�in the PropBank orpus is onverted to � [John A0℄ [breaks break.01℄ the [window
A1℄ [with A2℄ a rok.�. For details on this onversion, we refer to (Surdeanu et al.,2008).4.2.3 Evaluation metriTo evaluate the output of our automati SRL system we use the evaluation metriused in the CoNLL 2008 shared task (Surdeanu et al., 2008). The evaluation metriounts the number of orret labels, i.e. prediate labels and semanti role labels.A prediate label is onsidered orret if the label orresponds to the label in themanual annotation for that verb. A role label for a partiular word is onsideredorret if the label orresponds to the label in the manual annotation for thatword, independently of the label of the verb for that role. This soring strategyimplies that if a system assigns an inorret prediate label, it still reeives somepoints for the arguments orretly assigned.For a given test set, Ncorr is the number of prediates and role labels that areorretly lassi�ed, Nman is the number of prediates and role labels in the manualannotation and Nauto is the number of prediates and role labels in the automatiannotation. Preision, reall and F1-measure are de�ned as
precision =

Ncorr

Nauto

recall =
Ncorr

Nman

F1 = 2 ∗
precision ∗ recall

precision + recall4.3 Supervised SRL modelsWe will now disuss the models used for semanti role labeling. We �rst disussthe features used to represent the input text (setion 4.3.1) and then onsider twodi�erent models, based on a generative (setion 4.3.2) and disriminative (setion4.3.3) Bayesian network.2In the shared task the test set is split in a set with sentenes from the Wall Street Journaland a set with sentenes from the Brown orpus. We perform our experiments on all sentenesfrom both sets.
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Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . Figure 4.1: Example of the path feature extrated from the syntati parse tree.The path �nns^np^in^pp^s_s_vp_vdb� is traversed going from �votes� to �reeived�.4.3.1 FeaturesEvery word in the CoNLL 2008 orpus is tagged with its part-of-speeh by anautomati tagger (Ciaramita and Altun (2006), using the Penn Treebank tags)and a syntati dependeny tree is onstruted for every sentene by an automatiparser (Nivre et al., 2006). These automati annotations are, together with theword tokens, onverted to a number of features used in our semanti role labelinglassi�ers. These features (exept Split path) have been previously disussed, seefor example (Gildea and Jurafsky, 2002; Lim et al., 2004; Thompson et al., 2006).The number in brakets in the following list denotes the number of unique featuresfor that type in the CoNLL 2008 orpus.Word Unigram word tokens, inluding puntuation. (37079)Stem Word tokens redued to their stem, e.g. �walks� -> �walk�. (28690)POS The part-of-speeh tag for every word, e.g. �NNP�. (77)Neighbor POS's The onatenated part-of-speeh tags of the word before andthe word just after the urrent word, e.g. �RBS_JJR�. (1787)Path This important feature desribes the path through the dependeny tree fromthe urrent word to the position of the prediate, e.g. �nns^np^in^pp^s_s_vp_vdb�in �gure 4.1, where `↑' indiates going up a onstituent and `↓' going downone onstituent. (829642)Split Path Beause of the nature of the path feature, an explosion of uniquefeatures is found in a given data set. We redue this by splitting the pathin di�erent parts and using every part as a distint feature. We split, forexample, the previous path in 8 di�erent features: �nns�, �↑np�, �↑in�, �↑pp�,�↓s�, �↓s�, �↓vp�,�_vdb�. Note that the split path feature inludes the POSfeature, sine the �rst omponent of the path is the POS tag for the urrentword. This feature has not been used previously for semanti role detetion.(155)
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Figure 4.2: Generative model for SRL. m is the index of the sentene, out of aorpus of M sentenes, j is the index of the urrent prediate, out of Nm words inthe sentene and k is the index of the feature, out of K features.Child words The word tokens of the hildren in the dependeny tree of theurrent word, if any (34518).Child POS's The POS tag of the hildren in the dependeny tree of the urrentword, if any (77).Although most of the desribed features are independent of the prediate verb, thevalue of Path and Split_path di�ers with regard to the prediate verb. For thisreason we use Ftrji = [Ftr1
ji...F trK

ji ] to denote the K features of role rji, where jindiates the index of the prediate verb.4.3.2 Generative SRL modelThe generative Bayesian network for semanti roles used in this work is very similarto the network proposed in (Thompson et al., 2006) where it is used for semantiframe detetion and lassi�ation on the FrameNet data set.3For a partiular verb wj at position j in sentene sm and labeling Lj = (Predj , rj),where Predj is the prediate label and rj = [rj1...rjN ] are the role labels for allother words in the sentene, the model is de�ned as in �g. 4.2. The modelassumes that the prediate label Predj generates the features Ftrjj and generates3The only major di�erene is that in (Thompson et al., 2006) the model is not a fully generativemodel, sine the prediate label is generated by the prediate verb. In our model we assume thatthe prediate label generates the prediate verb. This way the model is a fully generative modelthat an be used for semi-supervised learning (see hapter 5).
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Figure 4.3: Disriminative model for SRL. m is the index of the sentene, out ofa orpus of M sentenes, j is the index of the urrent prediate, out of Nm wordsin the sentene and k is the index of the feature, out of K features.a sequene of role labels rj , where every role rji is dependent on the previous role
rji−1. Finally, every role rji, i 6= j, generates the features Ftrji.The probability distribution of this network is given by

P (Predj , rj ,Ftrjj) = P (Predj) ×
N
∏

i=1

P (rji|Predj , rji−1)

×
K
∏

k=1

P (Ftrk
jj |Predj) ×

N
∏

i=1

K
∏

k=1

P (Ftrk
ji|rji)We assign a ategorial distribution to the Predj node, and a olletion ofategorial distributions to the rji and Ftrk

ji nodes, one for every ombinationof values of their parents. Given an unlabeled sentene wm = w1, ..., wN andprediate word wj , we �nd the labeling Lj with the highest probability P (Lj ,wm).Given the prediate label pj , the model is equivalent to a Hidden Markov Modelmodel, and the optimal labeling Lj an easily be found using the Viterbi algorithm(Viterbi, 1967). To �nd the optimal prediate label pji, we run the Viterbialgorithm for every value of the prediate label and �nd the maximum produt ofthe prior probability of the prediate and the role labels for that prediate.4.3.3 Disriminative SRL modelSine disriminative models have been found to outperform generative models(Lim et al., 2004) for SRL, we propose an additional disriminative model. The



42 SUPERVISED SEMANTIC ROLE LABELING5%L 20%L 50%L 100%LSupervised generative model 38.03% 54.42% 58.38% 68.33%Supervised disriminative model 40.49% 67.23% 74.93% 78.65%Table 4.2: Results (in F1-measure) for the fully supervised generative anddisriminative models, using di�erent frations of the CoNLL 2008 training set.Results are average over 10 random subsets.struture of the model (�g. 4.3(b)) is similar to the previous generative model,although the dependenies have been reversed. The model assumes that the rolelabel rji for the word wi is onditioned on the features Ftrji and on the role label
rji−1 of the previous word, and that the prediate label Predj for word wj isonditioned on the role labels rj and on the features Ftrji. The likelihood of thismodel is given by

P (Predj , rj ,Ftrj1, ) = P (Predj |rj ,Ftrjj) ×
N
∏

i=1

P (rji|Ftrji, rji−1, P redj)This model an be seen as an extension of the standard maximum entropy Markovmodel (Ratnaparkhi, 1996) with an extra dependeny on the prediate label.4.4 Evaluation of supervised SRL modelsFor both lassi�ers we hoose the sets of features used by that lassi�er as theset that gave best performane when training the lassi�er on the full trainingset and testing on a held-out set, disjoint from both training and test set. Forthe generative model this was the features Stem, Neighbor POS's, Path and Childwords, and for the disriminative model, Word, Stem, Neighbor POS's, Split pathand Child words.We perform a number of experiments where we ompare the performane of thegenerative and disriminative models on training sets of di�erent size. We performexperiments with 5%, 20% and 50% and 100% of the full training set. If only asubset of the training examples is used we perform 10 di�erent experiments withrandom subsets and average the results. A �rst onlusion that an be drawn fromtable 4.2 is that the disriminative model outperforms the generative model for allsizes of the training set. This an be attributed to the superior maximum entropyparameter estimation method ompared to the maximum likelihood ombined withthe naive Bayes assumption. Furthermore we see that this di�erene beomessmaller when training on smaller training sets, suggesting that the NB might



CONCLUSIONS OF THIS CHAPTER 43prove useful for small training sets. The good performane of the NB lassi�er onsmall training sets was also observed by Nigam et al. (1999).We perform an informal error analysis. Generally speaking errors are ausedby two phenomena: ambiguity and underspei�ation. Ambiguity is ommon tonatural language, and is in this setting mainly aused by words that have multiplemeanings (e.g. the verb �run� that an mean �operate� and �walk quikly�) :�Mr. Stromah wants to resume a more in�uential role in running theompany.�and �[...℄ insurane generally runs a poor seond to any diret investmentyou might make.�Underspei�ation ours when words in the test set (or other new douments)are enountered that have not been seen in the training set. For example, in thefollowing sentene from the test set�The dark forms moved like mourners on some noturnal pilgrimage,their dirge unsung for want of voal hords.�the words �mourners� �noturnal�, �pilgrimage�, �dirge� and �unsung� have notbeen observed in the training set (nor have their lemmas). In fat, 27.80% of thesentenes in the test set of the CoNLL 2008 shared task ontain one or more wordsof whih the lemmas are not present in the training set.4.5 Conlusions of this hapterIn this hapter we have disusses semanti role labeling. We have developed anautomati method for this task that uses a number of features that apture theword, syntati properties of the word and the syntati relationship between theword and the prediate verb. We developed a disriminative and a generativelassi�er and trained these on an annotated orpus. Upon evaluation we found thatthe disriminative lassi�er outperforms the generative lassi�er, whih an mostlikely be attributed to the strong naive Bayes assumption made by the generativelassi�er. We saw however that for smaller sizes of the training set the performaneof the generative model was omparable to that of the disriminative model.Although the disriminative lassi�er ahieves state-of-the-art performane, itsauray is not fully satisfying. This an be attributed to the ambiguity and



44 SUPERVISED SEMANTIC ROLE LABELINGsparseness of natural language, and to the fat that often only a limited numberof examples is present in the training set for a ertain label.Underspei�ation and ambiguity are fundamental problems to natural languageproessing that need to be addressed by every automati method. Modern mahinelearning methods have already been a large step forwards ompared to manuallyonstruted rules, but still have important limitations. In hapters 5, 6 and 7we will address the problem of underspei�ation by augmenting the annotatedtraining set with large amounts of unlabeled data. Additionally the methoddeveloped in hapter 6 provides an automati method for the disambiguation ofambiguous words.
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46Outline part II : Weakly supervised information extrationDireted Bayesian networks an be used to solve some information extrationtasks with a high auray. Examples of suh tasks are part-of-speeh taggingand named entity reognition. For other tasks however this approah does notresult in a satisfatory solution. We have seen in the previous hapter, how themodels for word sense disambiguation and semanti role labeling ahieve onlya limited auray. This is not only observed for Bayesian networks, but alsofor other urrent mahine learning methods. The fundamental problem is thata supervised lassi�er is given by de�nition only a limited number of annotatedexamples. Natural language is however very varied, and even a very large trainingset will only ontain a fration of all possible words and phrases.In part II of this thesis we develop a number of solutions to this problem. Inhapter 5 we fous on semi-supervised learning, whih is traditionally proposedas a solution to the underspei�ation problem. Semi-supervised learning uses adata set of labeled and unlabeled examples when training information extrationmethods. We study semi-supervised methods based on generative Bayesiannetworks with hidden variables. We will see how the parameter estimation methodsintrodued in hapter 2 an easily be extended to the semi-supervised ase.We then propose a di�erent approah to weakly supervised learning: �rst learnstatistis or strutures from unlabeled data using an unsupervised model, andin a seond step use these statistis or strutures as additional information ina supervised model. In hapter 6 we introdue a novel unsupervised model,the latent words language model. This model learns word similarities from alarge orpus of unlabeled texts whih are used to redue the sparseness problemsrelated to traditional n-gram models, resulting in a better model of previouslyunseen texts. In hapter 7 we will show that these similarities an also besuessfully employed in a supervised model for information extration, resulting inimproved performane of the models for word sense disambiguation and semantirole labeling.The work in this part of the thesis is desribed in the following artiles:- Koen Deshaht and Marie-Franine Moens. Using the Latent WordsLanguage Model for Semi-Supervised Semanti Role Labeling. In proeedingsof the 2009 Conferene on Empirial Methods in Natural LanguageProessing (EMNLP 2009), Singapore, August 7, 2010- Koen Deshaht and Marie-Franine Moens. The latent words languagemodel. submitted to Computational Linguistis.- Koen Deshaht and Marie-Franine Moens. Weakly supervised learning forsemanti role labeling. submitted to the Journal of Arti�ial IntelligeneResearh.



47- Koen Deshaht and Marie-Franine Moens. The Latent Words LanguageModel. In Proeedings of the 18th Annual Belgian-Duth Conferene onMahine Learning (Benelearn 09), Tilburg, 2009.Furthermore the work desribed in hapter 6 has resulted in the following patentappliation:- Koen Deshaht & Marie-Franine Moens. Method for the automatidetermination of ontext dependent hidden word distributions. Submittedto U.S. Patent and Trademark O�e on November 18, 2009.





Chapter 5Semi-supervised learningwith Bayesian models
�Data! Data! Data� he ried impatiently. �I an't make briks without lay.�Sherlok Holmes in Doyle (1891)In this hapter we introdue a �rst weakly supervised method: semi-supervisedlearning, whih uses both labeled and unlabeled data to train an informationextration method. We introdue semi-supervised learning methods (setion5.1) and desribe how generative Bayesian networks an easily be extended toinorporate semi-supervised learning (setion 5.2). We then apply a number ofvariants of this semi-supervised learning method to semanti role labeling in setion5.3, and evaluate these methods in setion 5.4. We ompare our methods to relatedresearh in setion 5.5 and summarize our �ndings in setion 5.6.5.1 Introdution to semi-supervised learningFor most information extration tasks a large set of examples is needed to learn anaurate mapping from input si to output Li, requiring a signi�ant investment interms of time and manual labour. For information extration from texts this oftenboils down to manually annotating 10000's of sentenes with their orret labeling.Researhers have suggested to alleviate this so-alled annotation bottlenek withsemi-supervised learning methods that use a set of labeled examples together with49



50 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELSa large set of unlabeled examples. A system that ould learn an aurate lassi�erwith only a small set of labeled examples and a large set of unlabeled examples(whih an typially be olleted at a small ost) would substantial redue the ostof developing IE systems.A seond motivating fator for weakly supervised texts is the inherent sparsenessof natural language texts. This is for example expressed in Zipf's law (Zipf, 1949;Estoup, 1916), whih states that the number of times a word is enountered inany given orpus is inversely proportional to its frequeny rank. As a result, mostwords in a orpus are enountered only a small number of times, and any statistialmodel needs a way to handle previously unseen words when applied to a new text.Another manifestation of this sparseness is the fat that a sentene of reasonablelength has typially never been previously enountered in a given orpus (Katzand Fodor, 1963). A pratial result of the sparseness of natural language is thatit limits the auray of mahine learning methods on texts, whih is for exampleexpressed in the low auray of part-of-speeh tagging of previously unseen words(Brants, 2000). Weakly supervised tehniques that an analyze today's massiveorpora stored on omputers with modern day omputing power, o�er a methodto drastially sale up the number of training examples enountered by a givenmahine learning method, improving its auray.We onsider semi-supervised learning methods a subset of the more general weaklysupervised learning methods. We de�ne semi-supervised learning asDe�nition 5.6 Semi-supervsed learning methodsSemi-supervised mahine learning methods are methods that optimize a singleobjetive funtion whih inorporates both labeled and unlabeled data.The most important di�erene to weakly supervised learning is that a semi-supervised method aims at optimizing a single objetive funtion (e.g. thishapter), while a weakly supervised method an use di�erernt objetive funtionsto train the parameters from labeled and unlabeled data (e.g. hapter 7).5.1.1 Assumptions of semi-supervised methodsIn this setion we explain the assumptions behind most semi-supervised tehniques.At the ore of most methods are two observations: the �rst observation is thatthe spae of input examples ontains higher density regions (regions ontainingexamples that are likely to be observed) and lower density regions (regionsontaining examples that are not likely to be observed). The seond observationis that low density regions often orrelate with lassi�ation boundaries. Theentral idea in semi-supervised learning is to ombine these observations: use theunlabeled data to improve the density estimate of the input data and use this
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b() labeled and unlabeledFigure 5.1: Shemati �gure illustrating how unlabeled data might improve asupervised lassi�er. Grey dots are unlabeled data, white dots labeled data andthe dotted line the lassi�ation boundary.improved density estimate together with the labeled data to learn an improvedlassi�ation boundary. Figure 5.1 provides a shemati illustration of this idea:a supervised lassi�er with limited labeled data (�g. 5.1a) is ombined withunlabeled data (�g. 5.1b) to learn improved lassi�ation boundaries (�g. 5.1).In a di�erent wording (Chapelle et al., 2006) this assumption an be stated asAssumption 5.1 Semi-supervised smoothness assumptionIf two data points si and sj are lose in a high-density region, then so should bethe orresponding outputs Li and Lj.In our work the data points si and sj are words or sentenes and the outputs
Li and Lj are labels or labellings that annotate these words or sentenes. Thisassumption has been formulated di�erently, e.g. as the luster assumption thatstates that if two points are in the same luster they are likely to be of the samelass (Seeger, 2002), as the low density separation assumption that states that thedeision boundary lies in low density regions of the input spae (Chapelle and Zien,2005), or as the manifold assumption that states that the high-dimensional data lieroughly on a low-dimensional manifold (Belkin et al., 2004). Chapelle et al. (2006)argue that these di�erent formulations an all essentially be interpreted as speialases of the more general smoothness assumption. We will re�ne this assumptionfor the spei� models used in this work, i.e. semi-supervised (this hapter) andunsupervised (hapter 6) Bayesian models.5.1.2 Semi-supervised methodsWork on semi-supervised methods in mahine learning has been diverse andabundant. Two popular semi-supervised learning methods are self-training and



52 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELSo-training. These methods an be lassi�ed as �meta�-methods, in the sense thatthey an be employed with any mahine learning method. Other methods extend apartiular mahine learning method, suh as transdutive support vetor mahines(Joahims, 1999), the null-ategory noise model for Gaussian proesses (Lawreneand Jordan, 2005), expetation regularization for exponential models (Mann andMCallum, 2007) or generative models with hidden variables (Nigam et al., 2006).We refer to Chapelle et al. (2006) and Zhu (2005) for elaborate literature reviews.5.2 Semi-supervised learning withgenerative models5.2.1 IntrodutionIn hapter 2 we disussed how the maximum likelihood method is used to omputethe parameters of a Bayesian network given a set of labeled training examples.This method an easily be extended to a semi-supervised approah that learns theparameters of the model from a set of labeled and a set of unlabeled examples.Popularized notably by the EM-algorithm (Dempster et al., 1977), this approahhas reeived a lot of attention and its theoretial properties are well understood(Castelli and Cover, 1996; Cozman and Cohen, 2006). We �rst introdue thismethod in detail and then apply it to two information extration tasks.Given a Bayesian network, a training set DA = [(s1, L1)..., (sa, La)] of a labeledexamples and a set DU = [(sa+1, La+1)..., (sa+u, La+u)] of u unlabeled examples.We all the labels of the labeled data DA observed labels, and the (unknown)labels of the unlabeled data DU hidden labels, and assume that the probability ofa label Li being observed or hidden is independent of the sample si or of the valueof the label, i.e. we assume that a random seletion of examples were manuallyannotated.We now learn the parameters θsemi from these two olletions of data by optimizingthe ombined likelihood of the labeled and unlabeled examples:
Lsemi(θsemi) =

a
∑

i=1

log P (si,Li|θsemi) +
a+u
∑

i=a+1

log P (si|θsemi) (5.1)where the probability of the unlabeled sentenes is omputed as
P (si|θsemi) =

∑

Li

P (si|Li, θsemi) · P (Li|θsemi)



SEMI-SUPERVISED LEARNING WITHGENERATIVE MODELS 53Summarizing, we hoose the parameters θsemi so that the model �explains� thelabeled examples, by being likely to generate the labellings and the sentenes, and�explains� the unlabeled examples by being likely to generate the sentenes.This approah builds on the semi-supervised smoothness assumption sine itassumes that every dense region in the input spae an be modeled with a singlemixture omponent. The deision boundaries then lie naturally between thesemixture omponents. A formal treatment of this approah is given by Castelliand Cover (1995), who show that if the Bayesian network is equivalent to thenetwork used to generate the data, and if the mixture omponents are identi�able(Redner andWalker, 1984), the parameters θsemi an be suessfully learned from aolletion of labeled and unlabeled examples. Under these assumptions, inreasingthe size of the unlabeled set inreases the auray of the parameters, and only asmall number of labeled examples is needed to label the mixture omponents.Cozman and Cohen (2006) however show that adding unlabeled data an alsoderease the performane of the learned model. This an our if the model used forlassi�ation is signi�antly di�erent from the model that was used to generate thedata. They show that violating this orret model assumption will in general haveonly small in�uene on a fully supervised model, but an potentially dramatiallyredue the performane of a semi-supervised model. Furthermore in this asethe maximum likelihood estimate will result in di�erent parameters for the fullysupervised model than for the unsupervised model. The parameters of the semi-supervised model will then be asymptotially a linear interpolation of these twosets of parameters, and will be loser to the parameters of the supervised or tothe parameters of the unsupervised model depending on the ratio of labeled andunlabeled examples.Semi-supervised learning with generative models on real-world appliations hasprodued mixed results. Positive results have been reported on part-of-speehtagging (Cutting et al., 1992), named entity reognition (Collins and Singer, 1999),fae orientation disrimination (Baluja, 1999), and word alignment (Callison-Burhet al., 2004). Negative results were reported on image analysis (Shahshahaniand Landgrebe, 1994) and faial expression lassi�ation (Grandvalet and Bengio,2004). Brue (2001), and Nigam et al. (2000) report mixed results on respetivelyword sense disambiguation and text lassi�ation.5.2.2 Iterative parameter estimationTo selet the variables θsemi given the labeled and unlabeled examples (equation5.1) we an use two approahes. A �rst approah is to selet the set of parametersfor whih the likelihood is the highest. This is usually performed with a hill-limbing algorithm that hanges the parameters in every iteration suh that thelikelihood is guaranteed to inrease, until a (loal) maximum is reahed. A popular



54 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELSexample of this approah is the EM-algorithm (Dempster et al., 1977). A seondmethod is a Bayesian approah, where a prior distribution is de�ned for everyparameter. From these prior distributions, and the observed examples, the jointposterior distribution for all parameters is omputed. The �nal value of everyparameter is then set to the expeted value of this parameter aording to theposterior distribution, e.g. to the weighted sum of all possible values for thisparameter, where the weights are given by the posterior distribution. A popularexample of this approah is Markov Chain Monte Carlo sampling (Metropolis andUlam, 1949). In this hapter we use the latter approah, the former approah willbe employed in hapter 6.Given a set of parameters, a prior distribution for every parameter and a setof examples, we use Markov Chain Monte Carlo (MCMC) sampling to generatesamples of these parameters aording to the joint posterior distribution. Startingfrom a random initialization L
(1) of the parameters a Markov hain of samples

L
(1), ...,L(τ) is onstruted, where the sample L

(τ) is seleted aording to aproposal distribution q(L(τ)|L(τ−1)) depending on the previous sample L
(τ−1).The proposal distribution is hosen suh that the hain of samples has the ombinedlikelihood Lsemi as the equilibrium distribution. During the �rst number ofiterations (the burn-in period) the samples move from the random start positionto the region in the parameter spae with high likelihood. After this period, thesamples move around the parameter spae aording to the posterior distribution.Every number of iterations a sample is stored, and at the end of the MCMCmethod, every parameter is averaged over all olleted samples.5.3 Semi-supervised semanti role labelingIn this setion we apply two di�erent MCMC methods to semi-supervised learningfor semanti role labeling. We �rst extend the generative model to semi-supervisedlearning with Gibbs sampling in setion 5.3.1, and propose a new generative modelbetter tailored to semi-supervised learning in setion 5.3.2. We also extend thedisriminative model with Metropolis-Hastings sampling (setion 5.3.3).5.3.1 Gibbs samplingWe extend the generative model for SRL de�ned in �gure 4.2 to the ase of semi-supervised learning. For all labeled sentenes we set the prediate and semantirole labels to their manually annotated values. The labels for unlabeled sentenesare initially set to a random value1 and then iteratively updated: in sequene we1A strategy where a lassi�er was trained on the labeled examples and used to estimate initialvalues for the unlabeled examples did not result in signi�ant better results.



SEMI-SUPERVISED SEMANTIC ROLE LABELING 55visit all labels of the unlabeled sentenes, every time removing the urrent labelat that position, estimating the probability distribution of the label given thevalues of all other roles and prediates, and setting a new label randomly seletedaording to this distribution on this position.The probability of a new role rji on position i for verb wj with prediate Predj isgiven by
P (rji|L

(τ−1)
−rji

,Ftrji) ∼
c′(rji−1, rji, P redj)

c′′(rji−1, P redj)
×

c′(rji, rji+1, P redj)

c′′(rji, P redj)
×

K
∏

k=1

c′(Ftrk
ji, rji)

c′′(rji)(5.2)where L
(τ−1)
−rji

is all labellings in iteration τ−1, exluding label rji, c′(rji, rji+1, P redj)is the number of times role rji ours together with role rji+1 and prediate Predjin L
(τ−1)

−r
j
ji

inreased with a pseudo-ount α, and c′′(rji, P redj) is the number oftimes role rji and prediate Predj our in L
(τ−1)
−rji

inreased with a pseudo-ount|R|α where |R| is the number of distint values of the role label. c′′ is the totalnumber of labels in the dataset inreased with |P |α, where |P | is the number ofdistint values for the prediate label. All other symbols are de�ned analogously2.The pseudo-ounts α are the parameters of the prior distribution, a symmetrialDirihlet distribution. α is hosen to optimize the likelihood of the labels given anunseen test set.For a new prediate label Predj the probability is given by
P (Predj |L
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∏
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c′(rji, rji+1, P redj)
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×
K
∏
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c′(Ftrk
jj , P redj)

c′′(Predj)A new value is randomly seleted for the role or prediate label and the respetivevariable is assigned the new value. This iteration is performed many times, andafter the burn-in period the values of the role labellings are stored at regularintervals and are used to ompute the �nal set of parameters θsemi.2Note that all ounts used here an be stored, only to be updated if the value of a roleor prediate hanges, allowing for an e�ient implementation that re-estimates thousands ofvariables per seond.
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Figure 5.2: Graphial representation of the generative model with multiple mixtureomponents mi. k ranges over all sentenes in the orpus and i over the n wordsin the sentene.5.3.2 Gibbs sampling with a multiple-mixture modelWe have seen in the previous setion how semi-supervised learning is based onthe �orret-model� assumption. Although in pratie this assumption is almostalways violated, this sometimes does and sometimes doesn't derease performaneof semi-supervised methods. If a derease in performane is observed in semi-supervised models, it an be bene�ial to explore a di�erent model that mathesmore losely the statistis of the data (Cozman et al., 2003). One aspet of theproposed model for semanti role labeling that seems worrisome is the high numberof NULL labels. In the training set, more than 91% of the role labels are markedas NULL. This does not seem to be a good model of natural language, sine ittries to model almost all words with a single label. Nigam et al. (2006) have notedthat in the presene of a mismath between labels and true mixture omponents,it an be advantageous to de�ne a number of hidden mixture omponents, witha many-to-many mapping between mixture omponents and role labels. Withthis setup, we see a semanti role as a label for a luster of natural languagephenomena (e.g. prepositional phrases expressing a loation). This very generalluster however likely onsists of a number of sets of sentene onstituents thatare semantially and syntati related, i.e. a number of sub-lusters. The mixtureomponents an then be used to represented di�erent sub-lusters, leading to abetter representation of the di�erent semanti roles. We expet that this will beespeially helpful to obtain a more aurate model for the NULL label.



SEMI-SUPERVISED SEMANTIC ROLE LABELING 575.3.2.1 Desription of the modelThe multiple mixture Bayesian model is de�ned as in �gure 5.2. For a verb wnat position n in sentene sm of N words we introdue a vetor of N mixtureomponents mi = [mi1, ..., miN ]. The mixture omponents are never observed inthe training data, and are learned iteratively from the labeled and unlabeled data.We set the number of unique mixture omponents to 40. Although we assume that,after training, a single mixture omponent will map to a single role, this onstraintis never enfored during sampling. We will see in setion 5.4 how this in�uenesour results. We estimate the mixture omponents from the joint likelihood of thelabels and observed features for the labeled examples and of the likelihood of theobserved features for the unlabeled examples
LsemiMM (θsemi) =

a
∑

k=1

log P (si,Li|θsemi) +

a+u
∑

i=a+1

log P (si|θsemi)where the joint probability of a sentene and its labels is omputed as
P (sj,Lj |θsemi) =

∑

mji

[P (sj ,Lj |θsemi,mji) · P (mji|θsemi)]and the probability of an unlabeled sentene is omputed as
P (sj |θsemi) =

∑

mji

[P (sj |θsemi,mji) · P (mji|θsemi)]Note that we do not estimate the role labels of the unlabeled examples, sinethese do not in�uene the likelihood of the observed features, given the mixtureomponents.5.3.2.2 TrainingWe use Gibbs sampling to estimate the parameters of this model: we �rst set allmixture omponents to a random value and then sequentially visit every mixtureomponent mji, remove the urrent value for that omponent, and ompute aprobability distribution for the value of this mixture omponent given the features,the labels and all other mixture omponents. The probability distribution of amixture omponent in an unlabeled sentene is given by
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P (mji|M
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is the olletion of mixture omponents of all labellings in iteration
τ − 1, exluding omponent mji. Other symbols in this formula are analogousto symbols used in setion 5.3.1. The distribution of a new value of mixtureomponent mji of a semanti role for an unlabeled sentene is
P (mji|M
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×
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c′(Ftrk
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c′′(mji)We thus see that for an unlabeled sentene, the mixture omponents are onlydependent on the other mixture omponents and the features, not on the(unknown) labeling.5.3.2.3 InfereneThe joint probability of a labeling Lj = (Predj , rj) and a sentene w is given by
P (Lj ,w) =

∑

mji

P (w, Lj |mji, θsemi) · P (mji|θsemi)The mixture omponents are thus marginalized, i.e. summed out. Duringlassi�ation we �nd the prediate label and roles that maximizes this probability,using a beam searh.5.3.3 Metropolis-Hastings samplingWe have seen in hapter 4 how the disriminative model signi�antly outperformsthe generative model, and we would also like to expand this model to semi-supervised learning. This is however not as straightforward as for the generativemodel, sine in priniple unlabeled examples do not in�uene the onditionallikelihood of the labels in a disriminative model (Chapelle et al., 2006). However,we an employ a more general MCMC sampling method, Metropolis-Hastingssampling (Hastings, 1970; Bishop, 2006). In Metropolis-Hastings sampling thesample L
(τ+1) is seleted onditioned on the previous sample L

(τ) aording to



EVALUATION OF SEMI-SUPERVISED SRL 59some proposal distribution q(L(τ+1)|L(τ)). The sample is then aepted or rejetedwith a probability given by
G(L(τ+1),L(τ)) = min
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′

semi(S,L(τ+1)) · q(L(τ)|L(τ+1))

L
′

semi(S,L(τ)) · q(L(τ+1)|L(τ))

)Here L
′

semi(S,L(τ)) is the likelihood Lsemi(S,L(τ)) of the sentenes S andlabellings L
(τ) multiplied with some value δ, whih an be any non-zero value,as long as it remains onstant during the sampling proess. We hoose δ =

1
L(S) (i.e. the inverse of the likelihood of the sentenes) whih is a onstant(although unknown) value and see that L

′

semi(S,L(τ)) = Lsemi(L
(τ)|S). Thisis the onditional likelihood of the labellings given the sentenes, a valuethat an be omputed with the disriminative model. We set the proposaldistribution to q(L(τ+1)|L(τ)) = P (L(τ+1)|θ

(τ)
semi,S), where the parameters θ

(τ)
semiare learned from the previous labeling L

(τ) and the sentenes S using maximumentropy with generalized iterative saling. Similarly we de�ne q(L(τ)|L(τ+1)) =

P (L(τ)|θ
(τ+1)
semi ,S), where the parameters θ

(τ+1)
semi are learned from the labeling

L
(τ+1).Summarizing, the aeptane funtion G(L(τ+1),L(τ)) ombines the traditionalexploit/explore trade-o�. The fator Lsemi(L

(τ+1)|S)
Lsemi(L(τ)|S)

moves the sampling methodtowards labellings that maximize the onditional likelihood, exploiting known goodareas in the sample spae, while P (L(τ)|θ
(τ+1)
semi ,S)

P (L(τ+1)|θ
(τ)
semi,S)

enourages labellings that are�unlikely� given the urrent labeling, thereby exploring new areas in the samplespae. Also here, after the burn-in period a number of samples are stored whihare ombined in the �nal model.5.4 Evaluation of semi-supervised SRLWe evaluate the sampling methods using 20% of the examples of the CoNLL 2008training set as labeled examples, and di�erent sizes of the training set as unlabeledexamples, ranging from 0% (i.e. a fully supervised lassi�er) to 80%. A randomlabeling is reated for the unlabeled examples, whih is then iteratively updatedduring the Gibbs or Metroplis-Hastings sampling method. After an initializationperiod (i.e. the burn-in period) we ollet samples every 20th iteration. Theolleted samples are used to train a �nal model, whih is then evaluated on theCoNLL 2008 test orpus. We report the F1-measure of the di�erent methods intable 5.1. For the Gibbs sampling method, we see that adding unlabeled examplesdegrades performane, from 54.42% for a lassi�er that is trained on 20% of alllabeled examples and no unlabeled examples, to 43.75% for a lassi�er that was



60 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELS20%L+0%U 20%L+20%U 20%L+40%U 20%L+60%U 20%L+80%UGibbs 54.42% 48.61% 47.43% 45.86% 43.75%Gibbs MM 53.55% 52.39% 49.11% 51.70% 50.91%M-H 67.23% 62.12% 59.40% 60.68% 59.19%Table 5.1: Performane (in F1-measure) of the generative model trained withGibbs sampling, the generative multiple-mixtures model trained with Gibbssampling and the disriminative model trained with Metropolis-Hastings sampling.The models use 20% labeled (L) and various frations of unlabeled data (U) fromthe CoNLL training set.trained with 20% labeled and 80% unlabeled data. We must thus onlude that forthe generative model, the violation of the orret-model assumption is too severe,and adding unlabeled data makes the parameters move away from the optimalparameters for lassi�ation, resulting in a dramatially redued performane.We have proposed the multiple mixtures model as a model that has more �exibilityto model natural language. We see that for 20% labeled data and no unlabeleddata, the multiple mixtures model performs slightly worse than the standardgenerative model. The reason for this is that also for the labeled orpus we needto estimate the mixture omponents, whih might results in ambiguity betweensome mixture omponents and labels. We see however that the performane of themultiple-mixture omponents model is more stable when adding more unlabeledexamples, reduing only by less than 3% when using 4 times the number ofunlabeled examples ompared to the number of labeled examples. These resultsindiate that the additional degrees of freedom provided by the multiple mixtureomponents allow the model to model natural language more losely, making itbetter suited for semi-supervised learning. This an also be understood from thesemi-supervised smoothness assumption whih suggests that if the dense regionsan be modeled more aurately, labels an be propagated more reliably tounlabeled examples.Table 5.2 gives the mapping from role mixtures to role labels that wasautomatially learned during Gibbs sampling (using 20% labeled and no unlabeledexamples). We see that some role mixtures have a lear mapping to a single rolelabel, suh as mixture 0 to NULL role, mixture 1 to role A1 and mixture 3 to
A0. Other mixtures, suh as mixture 5 and mixture 14 are more ambiguous, andmap to multiple role labels, whih is a likely ause of errors. We also see thatmany roles map to the NULL role, on�rming our hypothesis that this label infat models di�erent types of sentene onstruts, whih are better modeled witha larger number of mixtures.Finally we evaluate the Metropolis-Hastings sampling algorithm. We start fromthe disriminative model, whih signi�antly outperforms the generative model



RELATED WORK 61A0 A1 A2 AM-ADV AM-DIS AM-LOC AM-MNR AM-MOD AM-TMP NULL total0 0.62 1.38 0.03 0.00 0.00 0.03 0.06 0.03 0.10 96.80 431461 1.25 86.20 0.15 0.19 0.01 0.07 0.03 0.08 0.49 10.93 195442 0.38 0.58 0.08 0.05 0.00 0.00 0.03 0.04 0.04 97.96 624933 92.74 1.16 0.89 0.95 0.12 0.00 0.41 0.08 0.12 3.26 65484 0.12 93.77 0.31 0.07 0.02 0.07 0.13 0.07 0.02 4.81 276655 0.19 45.54 0.20 0.06 0.05 0.04 0.01 0.07 0.02 53.74 562956 0.05 0.09 0.35 0.06 0.04 0.00 0.00 0.00 0.26 98.86 341477 0.12 0.05 0.01 0.01 0.01 0.01 0.00 0.01 0.06 99.35 834088 0.77 0.09 97.28 0.15 0.17 0.27 0.10 0.01 0.24 0.72 142639 0.96 0.70 0.09 0.00 0.09 0.06 0.01 0.22 0.19 97.41 2111210 0.79 1.37 0.12 0.20 0.21 0.16 0.03 0.63 86.80 9.36 1108211 96.09 1.03 0.18 0.00 0.02 0.05 0.00 0.01 0.02 2.19 4929512 0.04 5.51 0.88 0.73 0.31 0.25 0.14 0.62 0.44 90.40 945513 0.18 4.52 1.03 12.91 0.08 0.01 16.13 41.89 0.22 22.21 1160914 24.69 64.73 0.55 0.17 0.17 0.08 0.03 0.12 0.19 8.72 1302915 0.13 0.03 0.07 0.00 0.02 0.02 0.04 0.02 0.08 98.90 8250416 2.45 3.43 2.87 0.15 0.00 0.40 0.35 0.59 0.44 88.82 500917 10.62 0.78 4.71 0.15 0.02 16.88 1.23 2.66 0.27 61.24 366118 1.16 0.56 0.06 0.20 0.14 0.05 0.09 0.22 0.37 96.24 1465519 3.06 0.79 69.58 0.55 0.18 0.09 0.28 0.05 0.41 24.03 5803Table 5.2: For the 20 most frequent role mixtures (�rst olumn) and the 10 mostfrequent role labels (�rst row) in the labeled training set, this table lists the numberof assignments of role mixtures to role labels after the Gibbs sampling (using 20% ofthe labeled training data and no unlabeled data), numbers are given in perentagesof total ourrenes of the role mixture (last olumn). For the de�nition of thevarious roles, see table 4.1 on page 37.when using only labeled data. As we add more unlabeled data, we see that alsohere, the performane of the method dereases, although the derease (2.93%) issmaller then for the generative model.5.5 Related workConerning researh on semi-supervised methods for natural language proessingwe mention the appliation of self-learning on word sense disambiguation(Yarowsky, 1995) and on syntati sentene parsing (MClosky et al., 2006), theuse of o-training for syntati parsing (Sarkar, 2001) and part-of-speeh tagging(Clark et al., 2003), semi-supervised disriminative methods for deteting and



62 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELSlabeling gene and protein names (Jiao et al., 2006) and for named entity reognitionand part-of-speeh tagging (Mann and MCallum, 2007) and transdutive supportvetor mahines for mapping sentenes onto a formal meaning representation (Kateand Mooney, 2007) and performing dependeny parsing (Wang et al., 2008). Werefer the interested reader to (Abney, 2007) for more referenes on semi-supervisedlearning for natural language proessing. Although most of this researh showsthat semi-supervised learning for natural language proessing improves results,some researhers have also pointed to ases where adding unlabeled examplesdeteriorated performane. Nigam et al. (2000) �nd that a probabilisti model thatdoes not apture dependenies between features or that does not approximatethe orret number of lusters in the data an result in performane degradationfor semi-supervised methods. Charniak (1997) and Piere and Cardie (2001) �ndthat respetively self-training for sentene parsing and o-training for noun phrasebraketing an lead to inreased errors in the lassi�ation, most likely aused byinorporating inorretly labeled examples in the training phase.In reent years semi-supervised learning methods have been applied to semantirole labeling. He and Gildea (2006) use a self-learning sheme where a maximumentropy lassi�er is trained using a small set of labeled examples. This lassi�er isthen used to reate semanti role labellings for a large set of unlabeled sentenes,of whih the most on�dent are added to the labeled training set. This proess isrepeated for a number of iterations. Contrary to expetations this did not improvethe performane of the lassi�er. Also a o-training sheme where two lassi�erswere trained independently and used iteratively to label unlabeled sentenes failedto improve performane.Swier and Stevenson (2004) report on a suessful self-learning method to learnVerbNet semanti roles (Kipper et al., 2000) where the probabilisti lassi�er isaugmented with a set of linguisti restritions to guide the assignment of semantiroles to sentene onstituents, improving the performane of a baseline methodfrom a 63.7% auray to a 87.2% auray on a labeled setion of the BritishNational Corpus for 54 target verbs. The method was only tested on a small subsetof all verbs in VerbNet and to the best of our knowledge has not been reprodued onthe muh larger PropBank dataset. Furthermore we an see linguisti onstraintsas an alternative to labeled examples, adding extra human knowledge to thelassi�er.Finally we ite Fürstenau and Lapata (2009) who ompute a syntati andsemanti distane between sentene onstituents to automatially expand a smalltraining set with the most similar sentenes in a large set of unlabeled examples.The similarity metri ombines a syntati distane (using the dependeny tree ofthe sentene) and a semanti distane metri (using the Brown lustering algorithm(Brown et al., 1992)). A supervised lassi�er is then trained on this expanded set.This method was suessfully tested on the FrameNet orpus, where the largestrelative improvements were ahieved for small initial sets of labeled examples. We



CONCLUSIONS OF THIS CHAPTER 63will disuss this method more at length in hapter 7, where we will ompare itwith a method that ombines strutures learned by an unsupervised model.5.6 Conlusions of this hapterIn this hapter we have introdued semi-supervised learning as a solution to theunderspei�ation problem and disussed how semi-supervised learning is based onthe semi-supervised smoothness assumption. We have then extended the Bayesiannetworks with hidden variables for the unlabeled examples and shown how theparameters an be estimated with Markov Chain Monte Carlo sampling, whih weapplied on the generative and disriminative SRL models. The parameters of thegenerative SRL model were estimated with Gibbs sampling and the parametersof the disriminative model with Metropolis-Hastings sampling. We observed howthe performane of these semi-supervised lassi�ers deteriorated when using moreunlabeled data, whih is aused by a violation of the orret model assumption. Amultiple-mixtures model was then proposed as an improvement to the generativemodel, allowing more degrees of freedom when modeling natural language. We sawhow the performane of this model was more robust when adding more unlabeleddata.From these experiments we regrettably have to onlude that Bayesian networkswith hidden variables are not a suitable paradigm for semi-supervised learning ofinformation extration methods. This is in line with results indiating that semi-supervised learning, although potentially usefull for simple information extrationtasks (e.g. part-of-speeh tagging (Cutting et al., 1992) and named entityreognition (Collins and Singer, 1999)), does not help for more omplex tasks (e.g.noun phrase hunking (Piere and Cardie, 2001) and syntati sentene parsing(Charniak, 1997)). In the next hapter we turn to a di�erent approah to weaklysupervised learning: we �rst train an unsupervised model on unlabeled data, anduse, in a seond step, the statistis learned by this model in supervised lassi�ertrained on annotated data. We will see how this approah depends only slightlyon the orret model assumption, and does lead to improved results when usedwith large amounts of unlabeled data.





Chapter 6The Latent Words LanguageModel �When ideas fail, words ome in very handy�Johann Wolfgang von GoetheIn this setion we disuss a novel unsupervised model of natural language, thelatent words language model. This model learns syntatially and semantiallysimilar words from a large orpus of unlabeled texts to improve the preditivequality of an n-gram language model on unseen texts. We will start by desribingstate-of-the-art n-gram language models and the problems enountered with thesemodels (setion 6.1) and introdue the LWLM as a possible solution to theseproblems (setion 6.2). We evaluate the preditive quality of this model on unseentexts in setion 6.3 and the learned word similarities in setion 6.4. We disussrelated work in setion 6.5 and onlude this hapter in setion 6.6.Although this hapter might seem to be deviating from the topi of this thesis, weask the reader for some patiene, sine we will show at the end of this hapter andin the next hapter that the strutures learned in this language model are veryuseful to improve the performane of information extration methods.
65



66 THE LATENT WORDS LANGUAGE MODEL6.1 N-gram language modelsLanguage models are models that assign a probability to every sequene of words
w = [w1...wN ], whih re�ets the probability that this sequene will be generatedby a human user of natural language. Sentenes that are likely to be utteredshould thus be assigned a higher probability and sentenes that are unlikely tobe uttered a lower probability. These models have been used in a wide range ofappliations, suh as speeh reognition (Jelinek et al., 1975), mahine translation(Brown et al., 1990), spelling orretion (Kemighan et al., 1990) and handwritingreognition (Srihari and Baltus, 1992). In this setion we introdue the mostsuessful lass of language models, n-gram language models.6.1.1 IntrodutionAlthough any probabilisti method an be used for language modeling, the mostsuessful language models are n-gram models. These models estimate theprobability p(w) of the sequene of words w = [w1...wN ] as

p(w) =
N
∏

i=1

P (wi|w
i−1
i−n+1)where w

i−1
i−n+1 = [wi−n+1...wi−1] is the sequene of n − 1 words that our before

wi, i.e. the probability of wi is omputed using only the n−1 previous words. Thevalue of n is usually set to a small number (e.g. 3). These models are trained ona large unlabeled orpus wtrain = [w1...wNt
]. Let us �rst onsider the maximumlikelihood estimate of the probability P (wi|w

i−1
i−n+1), given by

PML(wi|w
i−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)where c(wi

i−n+1) is the number of times the sequene of words w
i
i−n+1 ours in

wtrain and c(wi−1
i−n+1) is the number of times the sequene w

i−1
i−n+1 ours in wtrain.This is a proper probability distribution sine∑wi

c(wi
i−n+1) = c(wi−1

i−n+1), but itwill lead to an ill-de�ned model, sine it assigns zero probability to many sequenes.The reason for this is that potentially |V |n n-grams an our in a given orpus,where |V | is the size of the voabulary (usually between 104 and 106 words). Anunobserved test orpus is thus likely to ontain many sequenes that have neverbeen observed. Figure 6.1 shows that the probability of an n-gram in a testorpus being observed in the training orpus beomes exponentially smaller withinreasing n.Methods to overome this problem generally ombine the probability of wi
i−n withlower order probabilities, i.e. the probability of observing w

i
i−n+1, the probability
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Figure 6.1: Probability p that an n-gram of length n in the test setion has beenobserved in the training setion, both from the Reuters orpus (setion 6.3).of observing w

i
i−n+2, ... and the probability of observing wi. For an extensiveoverview of these methods we refer to Chen and Goodman (1996) and Goodman(2001). In the following setions we review some methods relevant to the researhat hand: a simple interpolation model (setion 6.1.2), the state-of-the-art Kneser-Ney smoothing method (setion 6.1.3) and the novel relative disount Kneser-Neysmoothing method (setion 6.1.4).6.1.2 InterpolationA �rst method that is disussed is a simple interpolation model. The probabilityof the word wi given the previous words w

i−1
i−n+1 is omputed by the interpolationmodel as

PINT (wi|w
i−1
i−n+1) = λn

c(wi
i−n+1)

c(wi−1
i−n+1)

+ (1 − λn)PINT (wi|w
i−1
i−n+2) (6.1)where λn is a smoothing fator 0 ≤ λn ≤ 1. This is a reursive de�nition, inwhih the last term is the unigram probability PINT (wi) = c(wi)

Nt
, i.e. the relativefrequeny of the word wi in the training orpus. This method ombines spei�,but sparse and thus possibly unreliable, higher order n-grams with less spei�,but more reliable, lower order n-grams. The interpolation fators λn are onstantsseleted to optimize the preditive quality of this model (as measured by thelikelihood of a held-out orpus, see setion 6.3).6.1.3 Kneser-Ney smoothingOne problem with simple interpolation is that not all frequeny ounts should beonsidered equally reliable. Consider the sequene of words �Garry Tuker said� inthe 5M words Reuters orpus (setion 6.3). This phrase is only observed this one
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(a) predited ounts (b) absolute di�erene () relative di�ereneFigure 6.2: Comparison of the real frequeny in a 50M Reuters orpus versus theexpeted frequeny based on a 5M orpus.time in the entire orpus. The maximum likelihood estimate (i.e. 1

105 ) is howevermost likely a serious overestimation, sine most likely we will not observe thisphrase 10 times in a orpus of 50M words. Figure 6.2a shows the relation betweenthe expeted ount (based on a 5M orpus) and the observed ount (based on adisjunt 50M orpus in the same domain). We see that on average, the expetedount is larger than the observed ount. This di�erene an be quanti�ed inabsolute terms (i.e. the value obtained by subtrating the average predited ountsfrom the average measured ounts, �gure 6.2b) and in relative terms (i.e. thevalue obtained by dividing the average predited ounts by the average measuredounts, �gure 6.2). We see how both di�erenes hanges with the frequeny: lowfrequenies have a small absolute di�erene but a large relative di�erene, whilelarger frequenies have a bigger absolute di�erene but smaller relative di�erene.These observations suggest that a more aurate distribution an be obtained bydisounting c(wi
i−n+1) with some fator. This is inorporated in the absolutedisounted Kneser-Ney smoothing method, proposed by Ney et al. (1994) andadapted by Chen and Goodman (1996)

Pakn(wi|w
i−1
i−n+1) =

c(wi
i−n+1) − dn(c(wi

i−n+1))

c(wi−1
i−n+1)

+ δ(wi−1
i−n+1)Pakn(wi|w

i−1
i−n+2)(6.2)where dn(c(wi−1

i−n+1)) is the disount fator for ount c(wi−1
i−n+1) and δ(wi−1

i−n+1) isan interpolation fator that ombines the n-gram distribution with the lower order
n − 1-gram distribution and is de�ned by

δ(wi−1
i−n+1) = 1 −

∑

wi

c(wi
i−n+1) − dn(c(wi

i−n+1))

c(wi−1
i−n+1)

(6.3)



N-GRAM LANGUAGE MODELS 69A ommon hoie (Chen and Goodman, 1996) for the disount fator is
dn(c(wi

i−n)) =



















0 if c(wi
i−n) = 0

dn1 if c(wi
i−n) = 1

dn2 if c(wi
i−n) = 2

dn3+ otherwisewhere dn1, dn2 and dn3+ are onstants optimized on a held-out orpus. Uniqueto Kneser-Ney smoothing is that the probabilities of bigrams and unigrams areomputed in a di�erent manner. The probability distribution of bigrams is givenby
Pakn(wi|wi−1) =

π(wi−1wi) − d2(π(wi−1wi))
∑

wj
π(wi−1wj)

+ δ(wi−1)Pakn(wi) (6.4)where π(wi−1wi) = |{v|c(vwi−1wi) > 0}| is the number of di�erent words v suhthat the sequene vwi−1wi ours at least one in the training set. Similarly theunigram probability is omputed as
P (wi) =

π(wi)
∑

wj
π(wj)

(6.5)where π(wi) = |{v|c(vwi) > 0}| is the number of di�erent words v suh that thesequene vwi at least one. These speial omputations of the bigram and unigramdistributions are motivated by the observation that some words (e.g. �Franiso�)our frequently in a orpus, but our only in very spei� ontexts (e.g. �SanFraniso�), and that ounting the number of unique ontexts suh a word oursin gives a better estimate of the true probability of observing this word in a newontext.This smoothing method ombines a number of ideas: (1) the maximum likelihoodestimate is loser to the true distribution if the raw ounts are disounted with anabsolute fator, (2) lower order ounts are better estimated with formula's 6.4 and6.5 to math the marginals of the higher-order distributions to the marginals of thetraining data, and (3) depending on the struture of the higher order distribution,more or less weight should be given to this distribution. The motivation for (1) wasgiven previously and for the motivation for (2) we refer to (Chen and Goodman,1996). Property (3) however is an interesting quality that we will disuss a bitmore in depth.The interpolation fator δ(wi−1
i−n+1), given by equation 6.3, is not a stati fator,but a dynami fator that depends on the shape of the higher order distribution.



70 THE LATENT WORDS LANGUAGE MODELAssume for example the following de�nition for the disount fator
dn(c(wi

i−n+1)) =



















0 if c(wi
i−n+1) = 0

0.9 if c(wi
i−n+1) = 1

1.5 if c(wi
i−n+1) = 2

2.1 otherwiseTake that we observe the 3-gram �Garry Tuker said�, and want to ompute theprobability distribution of the next word. �Garry Tuker said� ours only one inthe training orpus and the interpolation fator θ("Garry Tuker said") is thus
1 − 1−0.9

1 = 0.9. A high weight is thus given to the lower order probabilitydistributions, sine the higher order distribution was sparse and probably notvery reliable.Now take that we observe the 3-gram �the �rst quarter�, whih ours 5493 timesin the orpus, and ours frequently with the same 4-grams e.g. �the �rst quarterof� (2643 times), �the �rst quarter , � (708 times) and �the �rst quarter and� (187times). For this training orpus, we �nd that δ("the �rst quarter") = 0.05, givinga high weight tot the higher order distribution sine it was observed frequentlyand is probably reliable.Kneser-Ney smoothing is not the only smoothing method to inorporate thisdynami interpolation (e.g. Jelinek and Merer (1980) and Bell et al. (1990)),but in our opinion it is the only method to ombine this in an e�etive waywith the disount of individual sequenes. In an extensive omparison of alarge number of smoothing tehniques, Chen and Goodman (1996) found thatinterpolated Kneser-Ney smoothing onsistently outperforms all other state-of-the-art smoothing methods.6.1.4 Relative disounted Kneser-Ney smoothingOne disadvantage of interpolated Kneser-Ney smoothing is that it is only de�nedfor disrete ounts. In the following setions we will use it in the EM-algorithm,where we need to disount non-disrete, probabilisti ounts. It is also unlearhow to ount the number of unique ontexts of a partiular word in this setting.For these reasons we propose a novel modi�ation of the Kneser-Ney smoothingmethod, termed relative disounted Kneser-Ney smoothing (RDKN). RDKN usesa relative disount fator dn(c(wi
i−n+1)) between 0 and 1. The smoothing method

Prkn(wi|w
i−1
i−n+1) is then de�ned by
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Prkn(wi|w

i−1
i−n+1) =

c(wi
i−n+1) × dn(c(wi

i−n+1))

c(wi−1
i−n+1)

+ δ(wi−1
i−n+1)Prkn(wi|w

i−1
i−n+2)(6.6)where the reursion ends with the unigram probability Prkn(wi) = c(wi)

N
. As beforethe interpolation fator δ(wi−1

i−n+1) is de�ned as
δ(wi−1

i−n+1) = 1 −
∑

wi

c(wi
i−n+1) × dn(c(wi

i−n+1))

c(wi−1
i−n+1)

(6.7)We de�ne dn(c(wi
i−n+1)) by dividing the spae of ounts c(wi

i−n+1) into S equallypopulated intervals with borders c1, ... , cS−1. Every interval is assigned a �xeddisount fator ds, de�ning the funtion dn(c(wi
i−n+1)) as

dn(c(wi
i−n+1)) =



















dn1 if c(wi
i−n+1) ≤ c1

dn2 if c1 < c(wi
i−n+1) ≤ c2

... ...

dnS if cS < c(wi
i−n+1)The values 0 ≤ dni ≤1 are optimized on a held-out orpus.This method is di�erent to interpolated Kneser-Ney smoothing in two aspets. The�rst di�erene is that we use a relative disount fator and not an absolute disountfator. The seond di�erene is that we do not use speial ounts for bigrams andunigram distributions, but use the relative disounted ounts as given by equation6.6 for the bigram distribution and use the maximum likelihood estimate for theunigram distribution.This formulation an be used onveniently with soft ounts, and in fat we see insetion 6.3 that it also outperforms Kneser-Ney smoothing when used with disreteounts.6.2 The latent words language modelAs disussed in the previous setion, the performane of language models is limitedby the sparse nature of n-grams. Although smoothing methods partially alleviatethis problem, they do not fully solve it. A major weakness of these models is thatthey treat every word in the text as a unique symbol, independent of all othersymbols. This ignores the fat that many words are synonyms or have related



72 THE LATENT WORDS LANGUAGE MODELmeanings, and that natural language typially uses onstrutions where ertainlasses of words (e.g. part-of-speeh lasses) always our on the same position(e.g. �determiner noun verb�). Let us assume for example that we observe thesequene �let's meet on Tuesday� in the training orpus. If the model would knowthat �Tuesday� is similar to �Monday�, �Wednesday� et., we ould predit thatthe sequenes �let's meet on Monday�, �let's meet on Wednesday�, et. an also beobserved in the test orpus.In this setion we build a model that aims at exatly this goal: learning words thatare synonyms or that have related meanings, and use these in an improved modelfor the predition of sequenes in the test orpus. We �rst desribe the model insetion 6.2.1. Although the de�nition of the model is simple, standard algorithmsan not be employed due to their large time omplexity. We disuss novelalgorithms for inferene (setion 6.2.2), training (setion 6.2.3) and preditingthe probability of unseen texts (setion 6.2.4). Finally we disuss some additionaltehniques used in the implementation in setion 6.2.5.6.2.1 Desription of the modelThe latent words language model (LWLM) introdues for a text w = [w1...wN ] oflength N for every observed word wi at position i a hidden (or latent) word hiwith an unknown value from the voabulary V. This model is a generative modelfor natural language that, for a given voabulary V , length N , ounts C andsmoothing parameters γ, generates a sequene of hidden symbols h = [h1...hN ]and a sequene of observed words w = [w1...wN ]. The generative proess is de�nedas follows:For i from 1 to N doSample a hidden word hi from the distribution P (hi|h
i−1
i−n, C, γ)Sample an observed word wi from the distribution P (wi|hi, C, γ)Here we impliitly understand that for the �rst words in the sequene, i.e. i < n,we only use the available ontext, e.g. if i = 1 then P (hi|h

i−1
i−n, C, γ) = P (hi|C, γ).This model ontains two probability distributions. The �rst distribution,

P (hi|h
i−1
i−n, C, γ), models the dependeny between the urrent hidden word andthe previous hidden words, and is modeled as a ategorial distribution, where theraw ounts are smoothed with relative disounted Kneser-Ney smoothing (RDKN).The seond distribution P (wi|hi, C, γ) models the dependeny of the observedword on the hidden word and is also a ategorial distribution, smoothed with a
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Figure 6.3: BN of the latent words language model. The words wi (gray nodes)are observed and the hidden words h (white nodes) are hidden variables.variant of RDKN
P (wi|hi, C, γ) =

c(wi, hi) × d(c(wi, hi))

c(hi)
+ δ(hi)

c(wi)

Nt

(6.8)We will use the term �smoothing parameters�, with symbol γ, to denote theolletion of disount fators used in these two smoothing methods.This model an also be expressed as a Bayesian network, shown in �gure 6.3. Fromthis �gure we see that the struture of the model is equivalent to the strutureof a hidden Markov model (HMM) (Baum et al., 1970; Baker, 1975). However,the two models have important di�erenes: where the latent variables in a ² areseleted from a small set of ategories, we model the latent variables as unseenwords that an be seleted from the entire voabulary. Furthermore we use a novelsmoothing method for the ontext model (i.e. RDKN), and algorithms for HMM'stypially assume that the hidden variables are only dependent on the previousvariable (i.e. n = 2), where we will use muh longer dependenies (i.e. n ≥ 5),whih has important onsequenes for the algorithms employed for training andinferene.One interpretation of this model states that a person who wishes to express aertain message, an hoose a large number of ways of expressing this message.However, when the message is uttered (or written down), this person has to hoseone spei� sequene of words, although many words in this sequene ould bereplaed with a synonym or related word while keeping the meaning of the messageintat. The hidden word hi an be seen to represent these possible alternativewords at a ertain position i in this sequene. The olletion of possible alternativesis modeled as a probability distribution P (hi|w) over all words in the voabulary.This interpretation is of ourse very loosely de�ned, and probably also a bit over-ambitious. We will however see that by training this model on a large olletionof unlabeled texts, we an learn word similarities with a high auray. These



74 THE LATENT WORDS LANGUAGE MODELword similarities an then be used suessfully to improve language models andinformation extration methods.We develop three methods for this model: inferene, where we estimate theexpeted value of the hidden variables given the observed words, training, wherewe estimate the parameters of the model given a large training text, and densityestimation, where we predit the probability of unseen texts.6.2.2 InfereneGiven a sequene of words wtest = [w1...wNu
] and the parameters C and γ, wewant to �nd the probability distribution P (hi|wtest, C , γ) of the hidden word hion position i.The forward-bakward algorithm Traditionally in HMM's this probability isomputed with the forward-bakward (i.e. Baum-Welh) algorithm, whihomputes this probability as

P (hi|wtest, C , γ) =
∑

h
i−1
i−n+2

α(hi
i−n+2)β(hi

i−n+2)

P (wtest|C, γ)
(6.9)where α(hi

i−n+2) = P (wi
1,h

i
i−n+2, C , γ) is the joint probability of observing

w
i
1 together with the sequene h

i
i−n+2, and β(hi

i−n+2) = P (wNu

i+1|h
i
i−n+2, C , γ)represents the onditional probability of observingw

Nu

i+1 given the sequene h
i
i−n+2.Both values are de�ned reursively as

α(hi
i−n+2) = P (wi|hi, C , γ)

∑

hi−n+1

α(hi−1
i−n+1)P (hi|h

i−1
i−n+1, C , γ) (6.10)and

β(hi
i−n+2) =

∑

hi+1

β(hi+1
i−n+3)P (wi+1|hi+1, C , γ)P (hi+1|h

i
i−n+2C, γ) (6.11)The values α(hi

i−n+2) an been seen as messages that travel from the start of thesequene to the end, while the values β(hi
i−n+2) an be seen as messages thattravel from the end of the sequene to the start. As the forward and bakwardmessages travel through the hain, at every position in the sequene we need to
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i−n+2) and β(hi

i−n+2) for every possible sequene h
i
i−n+2,requiring the storage of 2 × |H |n−1 values, where |H | is the number of hiddenstates. To ompute the next α(hi+1

i−n+3) (or β(hi−1
i−n+1)), we need to multiply andsum these values for every possible hidden state in the next position, requiringa omputational ost of O(|H |n). This needs to be performed for every position,resulting in a total omplexity of O(|H |n × Nu). For more information on theforward-bakward algorithm we refer to (Bishop, 2006).The omputational ost of the forward-bakward algorithm for standard HMM's islow beause most implementations of hidden Markov models use only the previousontext, i.e. n = 2, and use a small number of hidden states, i.e. 100 < |H | < 102.In our model the number of the hidden variables is the size of the voabulary,whih is 104 < |V | < 106 for any reasonable sized orpus, and we want to usea muh larger ontext, e.g. n = 5. It is thus lear that using the traditionalforward-bakward algorithm is not an option here.Forward-forward beam searh We develop an approximate version of theforward-bakward algorithm with lower time omplexity, termed the forward-forward beam searh. We introdue a funtion trim(α(hi

i−n+2)) de�ned by
trim(α(hi

i−n+2)) =

{

α(hi
i−n+2) if rank(α(hi

i−n+2)) ≥ b

0 otherwisewhere the rank rank(α(hi
i−n+2)) is found by sorting all possible sequenes h

i
i−n+2in desending order aording to the value of α(hi

i−n+2). The trim funtion thusremoves for a ertain position all values that are not among the b most likely values.We then de�ne the approximate α′(hi
i−n+2)

1
α′(hi

i−n+2) = σi−n+1P (wi|hi)
∑

hi−n+1

trim(α′(hi−1
i−n+1))P (hi|h

i−1
i−n+1) (6.12)this value is an approximation of α(hi

i−n+2) that takes into aount only the bmost likely values of α′(hi−1
i−n+1). This value will be loser to α(hi

i−n+2) withinreasing b, and will be equal if b ≥ |H |n−1. The fator σi−n+1 is the inverse ofthe probability mass not disarded on position i − n + 2, given by
σi−n+1 =

∑

hi
i−n+2

α′(hi−1
i−n+1)

∑

hi
i−n+2

trim(α′(hi−1
i−n+1))This fator makes sure that the total probability mass in the network remainsequal to 1.0. On every position we need to perform the summation in equation1For brevity we omit the parameters C and γ from these and the following equations.



76 THE LATENT WORDS LANGUAGE MODELAlgorithm 1 Forward beam searh for text wNt
.Require: V , C, γ, wtrain, d, n, bEnsure: Ai = α′(hi

i−n+2) for 1 ≤ i ≤ Nt1: A0 ⇐ {([ ], 1.0)}2: for i = 1 to Nt do3: Ai ⇐ {}4: for all (hi−1
i−n+1, α) in Ai−1 do5: for all hi in V do6: α∗ ⇐ α × P (hi|h

i−i
i−n+1, C, γ) × P (wi|hi, C, γ)7: h

i
i−n+2 ⇐ [hi−1

i−n+2hi]8: Ai ⇐ Ai ∪ {(hi
i−n+2, α

∗)}9: end for10: end for11: Ai ⇐ sumSame(Ai)12: Ai ⇐ trim(Ai,b)13: end for6.12 with a time omplexity of O(b|V |), and we need to sort these values to �ndthe b most likely values in the next iteration, with omplexity O(b|V | log(b|V |)).The pseudo-ode for the forward beam searh is shown in algorithm 1. Whenthis algorithm has been exeuted for a given text wtrain, the olletion Aiontains all α′(hi
i−n+2) for position i. The funtions sumSame(Ai) and trim(Ai)are not shown in the algorithm and perform the following operations on Ai :

sumSame(Ai) sums the probabilities of all strutures (hj
j−n+2, α) in Ai that havethe same value for h

j
j−n+2. The funtion trim(Ai, b) is the implementation of the

trim(α′(hi−1
i−n+1)) operator introdued earlier, i.e. it sorts all the values aordingto dereasing α, selets the b most likely and resales the remaining values with

σi−n+1 to make sure that the total probability mass remains 1.0.We ould de�ne a similar trimmed version of β(hi
i−n+2), but here we fae anadditional di�ulty. We use relative disounted Kneser-Ney smoothing to ompute

P (hi+1|h
i
i−n+2, C , γ), whih requires the omputation of δ(hi

i−n+2). This valuedepends on all possible values for hi−n+2, and limiting the omputation to only the
b most likely values of hi−n+2 would result in a degenerate probability distribution.For this reason we introdue a new forward probability γ(hi

i−n+2, hj) whih is thejoint probability of observing the words w
i
1, the sequene h

i
i−n+2 and the hiddenvariable hj . This value is de�ned for i ≥ j and is given by

γ(hi
i−n+2, hj) =

{

P (wi|hi)
∑

hi−n+1
α(hi−1

i−n+1)P (hi|h
i−1
i−n+1) if i = j

P (wi|hi)
∑

hi−n+1
γ(hi−1

i−n+1, hj)P (hi|h
i−1
i−n+1) if i > j
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i−n+2), but also inludes the probability of generating

hj . We an interpret γ(hi
i−n+2, hj) as a series of messages, where for every di�erentvalue of hj , a series of messages γ(hi

i−n+2, hj) is passed from position j to the endof the sequene. A trimmed version of this variable is de�ned as
γ′(hi

i−n+2, hj) =

{

σi−n+1P (wi|hi)
∑

hi−n+1
trim(α′(hi−1

i−n+1))P (hi|h
i−1
i−n+1) if i = j

σi−n+1P (wi|hi)
∑

hi−n+1
trim(γ′(hi−1

i−n+1, hj))P (hi|h
i−1
i−n+1) if i > jThe sum in this equation has time omplexity O(b|V |) and sorting the values hasomplexity O(b|V | log(b|V |)). Doing so for every position in the sequene resultsin a time omplexity of O(Nu × [b|V | log(b|V |)]).After passing all messages to the end of the sequene, we have a olletion ofmessages γ′(hNu

Nu−n+2, hj). To ompute the probability of hj given wtest we sumover all possible values of h
Nu

Nu−n+2, i.e.
P (hj |wtest, C

τ ) =

∑

h
Nu
Nu−n+2

γ(hNu

Nu−n+2, hi)

P (wtest|Cτ )
≃

∑

h
Nu
Nu−n+2

γ′(hNu

Nu−n+2, hi)

P (wtest|Cτ )Summarizing, we �rst pass a series of forward messages α(hi−1
i−n+1) from the startof the sequene to the end. We then pass for every position j in the sequene, aseries of γ(hi−1

i−n+1, hj) messages from that position to the end of the sequene. Oneimportant disadvantage of this approah is that in the original forward-bakwardalgorithm only a single pass of forward messages and a single pass from bakwardmessages is required to ompute the probability distribution for every hi. Inour formulation however we �rst perform a single pass of forward messages, andthen perform, for every position i, a pass of forward messages γ(hj
j−n+2, hi) fromposition i to the end of the sequene. This greatly inreases the omplexity ofthe algorithm. Therefore we make an additional assumption: we assume that theprobability distribution of hi given w

Nt

1 is approximately equal to the probabilityof hi given the words w
i+δ
1 for a ertain distane δ.
P (hi|w

Nt

1 , Cτ ) ≃ P (hi|w
i+δ
1 , Cτ )This seems plausible sine the words that our in the sequene far away from thehidden word will have little in�uene on this word.The total time omplexity of the forward-forward beam searh is O(Nu × (1+d)×

(b|V |+ b|V | log(b|V |)), whih will be, even for fairly high values for b and d, muhlower than the original time omplexity of the forward-bakward algorithm.The pseudo-ode for the forward-forward beam searh is shown in algorithm 2.The γ′(hj−1
j−n+1, hi) values are stored in a data struture Γj = {(hj−1

j−n+1, hi, γ)}



78 THE LATENT WORDS LANGUAGE MODELAlgorithm 2 Computation of expeted values of h1, ..., hNt
given wNtRequire: V , C,γ, wtrain, δ, b, A1, ..., ANtEnsure: Hj ≃ P (hj |wtrain, C, γ) for 1 ≤ j ≤ Nt1: for j = 1 to Nt do2: Γj ⇐ {}3: for all (hj

j−n+2, α) in Aj do4: Γj ⇐ Γj ∪ {(hj
j−n+2, hj , α)}5: end for6: for i = j + 1 to j + δ do7: Γ′

i ⇐ {}8: for all (hi−1
i−n+1, hj , γ) in Γi−1 do9: for all hi in V do10: γ∗ ⇐ γ × P (hi|h

i−1
i−n+1, C, γ) × P (wi|hi, C, γ)11: h

i
i−n+2 ⇐ [hi−1

i−n+2hi]12: Γ′
i ⇐ Γ′

i ∪ {(hi
i−n+2, hj , γ

∗)}13: end for14: end for15: Γ′
i ⇐ sumSame(Γ′

i)16: Γi ⇐ trim(Γ′
i,b)17: end for18: Hj ⇐ {}19: for all (hj+δ

j+δ−n+2, hj , γ) in Γj+δ do20: Hj ⇐ Hj ∪ {(hj, γ)}21: end for22: Hj ⇐ sumSame(Hj)23: end forwhere γ is the value of γ′(hj−1
j−n+1, hi). In every step we ompute for every possible

(hj−1
j−n+1, hi, γ) in Γj−1, the new probability γ∗, and add (hj

j−n+2, hi, γ
∗) to Γ′

j .The funtions sumSame(Γ′
i) and trim(Γ′

i) (not shown in algorithm 2) perform thefollowing operations on Γ′ : sumSame(Γ′) sums the probabilities of all strutures
(hj

j−n+2, hi, γ) in Γ′ that have the same value for h
j
j−n+2 and for hi. The funtion

trim(Γ′, b) is the implementation of the trim(γ′(hj−1
j−n+1, hi)) operator introduedearlier, i.e. it sorts all the strutures aording to dereasing γ, selets the bmost likely values and resales the ounts by σi−n+1 to make sure that the totalprobability mass remains 1.0.Related work We are not the �rst authors disussing the high time omplexityof HMM's, although none of the previous proposed methods ould be used here.Mithell et al. (1995) and Yu and Kobayashi (2003) propose algorithms that reduethe time omplexity of seond order expliit-duration HMM's, but the suggested



THE LATENT WORDS LANGUAGE MODEL 79algorithms are still quadrati in the number of hidden states, whih is also the asein the on-line learning algorithm proposed by Krishnamurthy and Moore (1993).Shue and Dey (2002) develop a e�ient algorithm for HMM's that have hiddenstates that are nearly ompletely deomposable, where the hidden states an begrouped together in �super-states�, whih is not the ase here.6.2.3 TrainingDuring training we want to �nd parameters C and γ that optimize the likelihoodof the model on an unseen test sequene. For this we use two orpora, a largeorpus wtrain = [w1...wNt
] and a smaller orpus wheldout = [w1...wNh

]. wtrain isused to determine the ounts C and wheldout is used to determine the smoothingparameters γ.We �nd the ounts C that maximize the likelihood of the model on the trainingorpus wtrain i.e. we selet the parameters suh that the model �explains� theobserved words in the training orpus. In HMM's, this is typially performed usingthe expetation-maximization (EM) algorithm. The algorithm starts from a initialestimate of the ounts C1. This estimate is then improved in several iterations,where every iteration performs an expetation step and a maximization step. Sineevery step improves the likelihood of the model on wtrain, it is guaranteed to�nd a (possibly loal) maximum likelihood estimate. In the expetation step theexpeted value of every hidden variable P (hi|wtrain, Cτ , γτ ) is omputed with theforward-bakward algorithm.For the LWLM, we perform three modi�ations to this algorithm. The �rstmodi�ation is that we �rst train a standard n-gram language model on theobserved words of the training orpus. We then set the probability distributionof every hidden word hi in the training orpus to P (wi|w
i−1
1 ,wNt

i+1), i.e. to theprobability of the observed word, given all words that our before and after thisword. This probability is omputed as
P (wi|w

i−1
1 ,wNt

i+1) ∼ P (wi|w
i−1
i−n+1)

n−1
∏

m=1

P (wi+m|wi+m+n−1
i+m+1 )This assignment makes the assumption that likely hidden words at a ertainposition are the words that are likely to be observed in that ontext, or morespei�ally, that are likely to be generated by the n − 1 previous observed words,and that are likely to generate the n − 1 next observed words. We assign thesedistributions to the hidden variable hi on every position and then onstrut theinitial ounts C1 from these distributions by olleting the following soft ounts:(1) the frequeny of the hidden word hi generating the observed word wi and (2)



80 THE LATENT WORDS LANGUAGE MODELthe frequeny of the m-gram of hidden words h
i
i−m+1 ourring in the sequene ofhidden words,h = [h1...hN ], where the length m ranges from n to 1.The seond modi�ation to the Baum-Welh algorithm is the use of the forward-forward beam searh to ompute an approximation of P (hi|wtrain, Cτ , γτ ). Theapproximate values found by this method are used to onstrut the new ounts

Cτ+1.2The third modi�ation is that we also update the smoothing parameters γτ+1: weuse an iterative line-searh to �nd the parameters that optimize the likelihood ofthe parameters given the held-out orpus. After the smoothing parameters havebeen optimized, we again perform an iteration of the EM-algorithm. This yle isrepeated until the parameters have onverged and the perplexity on the held-outorpus does not derease anymore.6.2.4 Prediting an unseen textWe have explained how we an estimate the hidden words for a partiular giventext. However, we would also like to use the model to predit the probability
P (wtest|C, γ) of an unseen text wtest = [w1...wNu

]. Standard HMM's use theforward algorithm to ompute this value
P (wtest|C, γ) =

∑

h
Nu
Nu−n+2

α(hNu

Nu−n+2)where α(hi
i−n+2) is de�ned as in the previous setion. This algorithm thuse�etively passes a series of messages from the start of the sequene to the end.The messages α(hNu

Nu−n+2) at the end of the sequene are then summed, resultingin the probability of observing the entire sequene.Sine the time omplexity of this algorithm is O(Nu|V |n), we propose the forwardbeam searh. This method uses the trimmed α′(hi
i−n+2) to ompute

P (wtest|C, γ) =
∑

hi
i−n+2

α′(hi
i−n+2)where α′(hi

i−n+2) is de�ned as in the previous setion. Note that, although thismethod drops unlikely α′(hi
i−n+2) values, it assigns a non-zero probability to everypossible sequene of observed words, thanks to the smoothing method used inequation 6.8. This method is outlined in algorithm 3.2Note that in fat we also need to estimate P (hi

i−n+1
|wtrain, Cτ , γτ ), i.e. the probabilityof the observing the sequene h

i

i−n+1
given the training text and the urrent parameters. Forstandard HMM's, this value an easily be omputed using the forward and bakward messages(see Bishop (2006)). An approximation to this value is also omputed with the forward-forwardbeam searh, we refer to setion C in the appendix for details on this method.



THE LATENT WORDS LANGUAGE MODEL 81Algorithm 3 Compute probability of observed text wtestRequire: wtest, ANtEnsure: P ≃ P (wtest|C, γ)1: P ⇐ 02: for all (hj
j−n+2, α) in ANt

do3: P ⇐ P + α4: end forN-gram models that map words to hidden variables or lusters often improve theability of a model to predit the probability of unseen sequenes, but they an alsohurt preision when assigning to muh weight to unseen sequenes (Goodman,2001). For this reason it is often a good idea to interpolate these models with astandard n-gram model. We de�ne an interpolated version of the LWLM as
P (wtest|C, γ) =

Nt
∏

i=1

[

αP (hi|h
i−1
i−n+1, C , γ) × P (wi|hi, C , γ) + (1 − α)Prkn(wi|w

i−1
i−n+1)

]where 0 ≤ α ≤ 1 is a onstant value optimized on a held-out text.6.2.5 Implementation of the LWLMWe have disussed a number of adaptations to the standard algorithms used forHMM's to redue the time omplexity of these algorithms. However, even withthis redued omplexity, a number of additional optimizations were implementedin order to be able to run the LWLM on a large dataset.Distributed training We have developed a distributed omputing infrastruturethat enables the distributed omputation of the LWLM on a large numberof omputers. This infrastruture is robust, very easy to set-up, downloadsautomatially the neessary lass-�les and datasets, and has remote exeptionhandling. Furthermore it has been implemented for performane, with dataahing, load balaning and automatially seletion of the fastest omputing lients.For the full desription of this arhiteture we refer to setion A in the appendix.Additional optimization of the forward-forward and forward beam searhWe have seen how the time omplexity of the forward-forward beam searh is
O(Nt(b|V | + b|V | log(b|V |)) and the omplexity of the forward beam searh is
O(Nu(b|V | + b|V |log(b|V |)). In fat, these algorithms are dominated by the b|V |term, sine sorting the values, with omplexity of b|V |log(b|V |), has a very small



82 THE LATENT WORDS LANGUAGE MODELonstant fator, and an be ignored in pratie. Beause of the large size of |V |,performing b|V | omputations makes the algorithm too slow for many appliations.For this reason we only onsider a subset W ⊂ V of all hidden words. The possiblehidden words hi that are seleted for a partiular observed word wi, are the wordswith highest values P (wi|hi)P (hi). We set the size of W greater then b, butsubstantially smaller than V , e.g. often we set b = 50 and |W | = 200. Thisoptimization is used in the forward-forward beam searh and the forward beamsearh. It is however not used when omputing the likelihood of the model on atest text, sine seleting W based on the observed word wi when trying to preditthis word, is a form of heating, resulting in an unrealisti low likelihood.6.3 Evaluating the proposed language modelsIn this setion we evaluate the performane of the di�erent language models. Theperformane of a language model is typially measured in terms of the perplexityof the model on the unseen test orpus w = [w1...wNu
]

Nu

√

1

P (wT )where P (wT ) =
∏Nu

i=1 P (wi|w
i−1
1 ) is the probability of the test orpus. Theperplexity an be seen as the onfusion of the model. For example, a languagemodel that assigns equal probability to 100 words at every position in the held-outorpus has a perplexity of 100 (assuming that at every position the observed wordbelongs to the set of predited words). One attrative property of the perplexitymeasure is that the �true� model for any data soure will have the lowest possibleperplexity for that soure. Thus, the lower the perplexity of our model, the loserit is in some sense, to the model of natural language employed by humans.We �rst ompare the performane of the latent words language model with a otherlanguage models in setion 6.3.1 and then evaluate ertain aspets of the proposedmodels in setion 6.3.2.6.3.1 ComparisonWe ompare the performane of the language models presented here on threedi�erent orpora. The �rst two orpora, Reuters and APNews3, are olletionsof news artiles that are distributed respetively by the Reuters and AssoiatedPress news agenies. Both orpora have a large fration of �nanial news, together3We would like to thank Yoshua Bengio and Hugo Larohelle for providing this orpus.



EVALUATING THE PROPOSED LANGUAGE MODELS 83with a smaller amount of general news. The third orpus EnWiki is a olletion ofenylopedia artiles from the English language Wikipedia. The APNews orpuswas preproessed as desribed by (Bengio et al., 2003), the other two orpora werepreproessed by onatenating all sentenes and mapping all words that ourredless than 3 times in the ombined training, held-out and test orpus to a new,�UNKNOWN� symbol. All puntuation was preserved. The voabulary size of theorpora is 39373 for Reuters, 15247 for APNews and 54371 for EnWiki, re�etingthe larger topial variation of the EnWiki orpus. For both orpora we use a�xed setion of 100K onseutive words as a held out orpus, used to optimize thesmoothing parameters of every methods, and a setion of 100K onseutive wordsas a test orpus, used to measure the perplexity of every model.Table 6.1 shows the performane of the di�erent models on the three orpora. Weompare 5-gram models with interpolated smoothing (IP), absolute disountedKneser-Ney smoothing (ADKN ), relative disounted Kneser-Ney smoothing(RDKN ), the latent words language model (LWLM ) and the interpolated versionof this model (int. LWLM ). For omparison's sake we also inlude the results ofthe full-ibm-predit model (IBM ), whih is an existing language model that reateslusters of words that are syntatially and semantially similar, but ontrary toour method, all words are hard-assigned to a single luster (Goodman, 2001). Itwas found to be the best luster-based model by Goodman (2001).We make the following observations:
• Interpolated smoothing performs muh worse then the other languagemodels, whih is well-known (e.g. Chen and Goodman (1996)).
• Relative disounted Kneser-Ney smoothing onsistently outperforms ab-solute disounted Kneser-Ney smoothing. We have performed a fairomparison where both models used the same number of disount parameters.This refutes any optimality laims that have been made for absolutedisounted Kneser-Ney smoothing (Chen and Goodman, 1996; Goodman,2001). In fat we suspet that smoothing methods that use more omplexmethods for disounting will prove to be even more suessful.
• The latent words language model outperforms both variants of Kneser-Ney smoothing. This shows that the algorithm suessfully learned wordsimilarities that alleviated the sparseness problems of n-gram models. Wewill disuss this in more depth in setion 6.4.
• The interpolated latent words language model outperforms all other testedmodels. Compared to absolute disounted Kneser-Ney, whih is a frequentused baseline, LWLM performs between 14% and 18% better. Comparedto full-ibm-predit model, whih is to our knowledge the best n-gram basedlanguage model, it performs between 7% and 10% better.



84 THE LATENT WORDS LANGUAGE MODELMethod ReutersNews APNews EnWikiIP 130.61 148.49 170.29IBM 108.38 125.65 149.21ADKN 114.96 134.42 161.41RDKN 112.37 132.99 160.83LWLM 108.78 124.57 151.98int. LWLM 96.45 112.81 138.03Table 6.1: Results in terms of perplexity of the 5-gram models with interpolated(IP), absolute disounted Kneser-Ney (ADKN) or relative disounted Kneser-Ney (RDKN) smoothing, of the latent words language model (LWLM) and itsinterpolated version (int. LWLM) and of the full ibm predit lass-based languagemodel (Goodman, 2001).
(a) n-gram length n (b) beam size bFigure 6.4: Perplexity of the interpolated LWLM, depending on the length of then-gram (n) or of the beam size (b).6.3.2 Additional experimentsIn the following paragraphs we investigate ertain properties of the interpolatedLWLM. For all experiments we train the model on the 5M Reuters orpus.In a �rst experiment we justify the hoie for a relatively large value for n. Figure6.4a shows how the perplexity of the model varies with inreasing n. As n inreases,we take into aount a larger ontext, resulting a lower perplexity of the model.We see that we need to use a value of n = 4 or n = 5 for a ompetitive languagemodel, justifying the approximate tehniques developed in this hapter to makeusing suh a large ontext window possible.In a seond experiment we see the in�uene of the beam size for the LWLM. Forthis we measure the perplexity of the interpolated LWLM with di�erent beam
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Figure 6.5: Perplexity of the interpolated LWLM for di�erent number ofparameters employed in the Kneser-Ney smoothing method.sizes. We see from �gure 6.4b that even with a beam size of 1, i.e. when we onlyonsider the single most likely value for the hidden words, the LWLM outperformsRDKN (whih ahieves 112.37 on this orpus). With inreased beam width theLWLM ahieves lower perplexities, although this di�erene is small for beam sizeslarger then 20. In our experiments we have hosen a onservative beam width of
50.In a third experiment we see the in�uene of the number of smoothing parametersemployed in our model. We use the de�nition given in setion 6.1.4 for relativedisounted Kneser-Ney smoothing: for the n-grams hi−n+1...hi of a partiularlength n we reate for the ounts c(hi−n+1...hi) a number of equally populatedintervals. The ounts in a partiular interval are then disounted with a ertainfator, unique to this interval. As we inrease the number of intervals (and thusthe number of disount fators), the model has more expressive power, most likelyresulting in a more aurate model. Figure 6.5 shows how the perplexity of themodel hanges with the number of intervals employed in the disount funtion. Wesee that it is important to use more then one interval, but after that performanelevels o� quite quikly. In the experiments we set the number of intervals to 5.Note that for n-grams of di�erent length, we have a di�erent set of disount fators,e.g. for a model with n = 5 and 5 intervals for every disount funtion we have atotal of 25 disount fators.6.4 Semanti aquisitionA di�erent method for assessing the performane of the LWLM is to perform amanual inspetion of the hidden words that are estimated for a given sentene. Aninformal evaluation has shown that the disovered hidden words apture synonymsor related words, and that the hidden words are ontext dependent, essentiallydisambiguating the observed words. Table 6.2 gives the hidden words for anobserved sentene from the training orpus, showing that for most words orret



86 THE LATENT WORDS LANGUAGE MODELa japanese eletronis exeutive was kidnapped in mexioa japanese tobao exeutive was kidnapped in mexiothe u.s. eletronis diretor is abduted on usaits german sales manager were killed at uka british onsulting eonomist are found of australiaone russian eletri spokesman be abdution into anadaTable 6.2: Example of the most probable hidden words (bottom rows, sortedaording to desending probability) for a given observed sentene (top row, bold)from the Reuters training orpus.synonyms (e.g. kidnapped/abduted, exeutive/diretor) or related words (e.g.Japanese/u.s., abduted/killed) are found. This expansion an help to solve theunderspei�ation and ambiguity problems of information extration from naturallanguage. In the next setion we will see how indeed this model does improvesemanti role labeling, espeially in the ontext of a limited number of trainingexamples.6.5 Related workFinding (soft) lusters of similar words, or �nding similarities between words, hasbeen a goal of NLP researhers for many years. It has been long time knownthat the similarity of two words ould be learned by omparing their relativeontexts in a large orpus: words ourring often in similar ontexts tend to have asimilar meaning. This was maybe most famously formulated as the distributionalhypothesis, supported by theoretial linguists suh as Harris (1954) and Firth(1957).A large body of work has foused on methods to model the ontext of a partiularword, and to ompute a similarity measure based on these ontexts. Frequenthoies to model the ontext is a window of words or the diret dependents of theword in a syntati dependeny tree. Many methods have been used as similaritymeasures, ranging from the osine measure, to the Jaard index or the Kullbak-Leibler distane (Pereira et al., 1993; Grefenstette, 1994; Lin, 1998b; Grishmanand Sterling, 1994; Hearst, 1992).Other researhers have foused on using generative models to learn lasses of words.Related to our researh is the work on unsupervised HMM's to learn a part-of-speeh tagger (Merialdo, 1994). Typially a ditionary provides onstraints in theform of possible part-of-speeh tags for a large olletion of words, whih are usedduring the forward-bakward algorithm to learn part-of-speeh tags for all words inthe orpus. Without these onstraints, it is hard to learn aurate part-of-speeh



CONCLUSIONS OF THIS CHAPTER 87taggers (Smith and Eisner, 2005), although the importane of orret smoothingmethods has also been reognized (Wang and Shuurmans, 2005). Reently, therehas been some work on learning HMM's with Bayesian tehniques suh as Gibbssampling (Goldwater and Gri�ths, 2007; Johnson, 2007). These methods howeverould not be employed in this ontext, sine they require impratially many (upto 20000) iterations to onverge.Other generative models were designed spei�ally for language modeling. Class-based language models aim to overome the sparseness problems of n-gramlanguage model by lustering all words in a large number of lasses (Brown et al.,1992; Goodman, 2001). Typially a hard assignment is hosen, where a wordbelongs to exatly one lass. Although these methods outperform standard Kneser-Ney smoothing, we have shown in the previous setion that the LWLM outperformsthese models in terms of perplexity on unseen texts. Furthermore, we will see inthe next setion that the probabilisti distanes learned with the LWLM are moreuseful for improving information extration methods than the lasses.Finally we would like to mention the interesting work performed by Collobert andWeston (2008) who propose a onvolutional neural network arhiteture that isjointly trained for language modeling and for a number of di�erent informationextration tasks. During the joint training, a look-up table is learned that mapswords to a number of hidden lasses. After training these lasses representsyntatially and semantially related words, similar to the results ahieved inour work. Another ommon point was that the authors found that a lassi�erfor semanti role labeling ahieved best results when trained jointly as a languagemodel. In the next hapter we will see this is a result that is also on�rmed byour work.6.6 Conlusions of this hapterIn this hapter we have introdued the latent words language model. We startedby answering the question �What happens if we replae the hidden states ina hidden Markov model with hidden words?�. We saw that this model wouldhave an infeasible large time omplexity when omputed exatly, and we havethus introdued a number of approximate methods with lower time omplexity.The forward beam searh was proposed as an approximate variant of the forwardalgorithm with lower time omplexity. This algorithm was used in the forward-forward beam searh to ompute the expeted value of the hidden words given anobserved text, and in a method to ompute the probability of an unseen text.We have ompared the LWLM with a number of other language models andseen that the interpolated LWLM outperforms all other n-gram models. Weattribute this to the fat that the word similarities lessen the sparseness problem of



88 THE LATENT WORDS LANGUAGE MODELtraditional n-gram models. We also outperform the full-ibm-predit model, whihlearns hard word lusters. This an be explained by the fat that our probabilistimodel is able to learn weighted similarities, i.e. it doesn't assume that a word isompletely similar or dissimilar to another word.Finally an informal inspetion showed that the learned word similarities orrelatewith human assessment of similar words, and that the hidden words an be used todisambiguate a ertain observed in a ertain ontext. In the next hapter we willsee how these an be used to augment supervised information extration methods.



Chapter 7Using unsupervised modelsfor information extrationIn hapter 5 we argued that all weakly supervised models rely on the sameassumption: examples that are lose together in a high-density region have thetendeny to be assigned the same label. In that hapter we have then proposedan approah where a single Bayesian network modeled both the spae of examplesand the labels assigned to these examples. Unlabeled data was then added to thismodel by onsidering the labels of the unlabeled examples as hidden variables thatould be automatially estimated with Markov hain Monte Carlo methods.In this hapter we disuss a di�erent approah to weakly supervised learning: weuse one unsupervised Bayesian network to model the spae of examples and feedthe strutures learned by this model in a seond Bayesian lassi�er that is usedfor lassi�ation. In this hapter we onsider two models to model the inputexamples: the latent words language model and a lass-based language model. Wefeed the results of these models in a supervised disriminative lassi�er. We testthis approah on two information extration tasks: word sense disambiguation andsemanti role labeling.7.1 Unsupervised modelsWe �rst train two unsupervised models on unlabeled data. The �rst model is thelatent words language model (LWLM) disussed in the previous hapter. We trainthis model on a 20M words Reuters orpus to learn the ounts C and smoothingparameters γ (see setion 6.2.2). We then use this model to �nd the probability89



90 USING UNSUPERVISED MODELS FOR INFORMATION EXTRACTIONdistribution P (hi|w
Nt

1 , C, γ) of hidden words hi for every word wi in the trainingand test data of the information extration task at hand.The seond unsupervised model used in this hapter is the lass-based languagemodel full ibm predit (Goodman, 2001), whih was also trained on the same 20MReuters orpus. This model learns an assignment of every word in the voabularyto a luster ci. One this assignment is learned, we an trivially assign the orretluster to every word in the training and test data for the information extrationtask. The number of lusters is optimized on a held-out orpus and was seletedto be 1250.Both unsupervised models have exatly the same goal: minimizing the perplexityof the model on an unseen text. The main di�erene is that the �rst modellearns a probabilisti mapping from the observed words to latent words, wherethe seond model uses a hard mapping, where every observed word is assigned toa single luster. A seond important di�erene is the number of latent variables:for the LWLM the number of hidden variables is equal to the number of wordsin the voabulary, while for the lass-based language model the number of hiddenvariables is equal to the number of lasses.7.2 Words Sense DisambiguationWe �rst disuss weakly supervised learning for word sense disambiguation (WSD).WSD, was desribed in setion 3.3 as the task of seleting the right sense of apartiular word from a �ne-grained ditionary of di�erent senses depending on theontext the word ours in. We saw how the generative and disriminative modelsfor this task use a large number of features extrated from the ontext to performword disambiguation. In this setion we will expand this model to the weaklysupervised ase where we inorporate strutures learned from an unsupervisedmodel.7.2.1 Expanding the set of featuresWe �rst onsider a method that employs the hidden words estimated by the LWLM.Given the hidden words for both the Semor training set and the Senseval3 testset, we expand the standard set of features f(wj) (setion 4.3.1) with two typesof probabilisti features. The �rst type is the hidden word for the word beingdisambiguated. |V | extra values are thus appended to the feature vetor f(wj),ontaining the probability distribution over the |V | possible values for the hiddenvariable hi. The seond type of features are the probability distributions for thehidden variables within a ertain window of the urrent word. Also for these |V |probability values are appended to the feature vetor.



SEMANTIC ROLE LABELING 91features nouns verbs adjetives allstandard 65.12 68.15 54.10 66.32+hidden words 67.36 69.35 55.06 67.61+lusters 66.5 68.59 55.20 66.97Table 7.1: Results (in terms of % auray) for word sense disambiguation on theSenseval3 dataset using a supervised disriminative lassi�er with extra featuresderived from hidden words or lusters from a lass-based language model.We also test an alternative unsupervised model, the lass-based IBM model. Alsohere two types of features are used: the lass of the urrent word and the lassesof all words within a ertain window of the urrent word. These lasses are allappended to the feature vetor.One all feature vetors are expanded, they are used in a supervised disriminativelassi�er that is trained on the Semor orpus.7.2.2 EvaluationThe model is tested on the test data from the Senseval3 workshop (Snyder andPalmer, 2004). Also here the feature vetors are expanded as desribed aboveand used to test the auray of the model. Table 7.1 shows that both featuresimprove the auray of the lassi�er. The auray for the lassi�er using hiddenwords features are 67.36%, 69.35% and 55.06% for nouns, verbs and adjetivesrespetively, whih are all higher then for the supervised lassi�er. The aurayof this lassi�er on all words is 67.61%, whih is to the best of our knowledge, thebest result ahieved on this dataset.The lassi�er using luster features also outperforms the standard lassi�er,although it performs worse for nouns and verbs than the lassi�er that uses hiddenwords. Sine nouns and verbs make up the majority of the words to be labeled,this lassi�er also performs lower overall.7.3 Semanti role labelingWe onsider two methods for weakly supervised semanti role labeling (SRL). Inthe �rst method the hidden word or hidden lass are inluded as an extra feature(setion 7.3.1). The seond method automatially expands the training set byseleting similar sentenes from a large unlabeled orpus (setion 7.3.2). Bothapproahes are evaluated in setion 7.3.3.
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Steward & Stevenson makes equipment powered with diesel turbines

Poland makes no machinery for a plant on that scaleFigure 7.1: Mapping dependents of one ourrene of �makes� to another.7.3.1 Expanding the set of featuresFirst the hidden words P (hi|w
Nt

1 , C, γ) are estimated for both the CoNLL 2008training and test set. Here we only use one type of probabilisti feature, the hiddenwords for the word that is urrently being labeled. These probabilisti featuresare appended to the feature vetor in a manner idential as for WSD.We also test an alternative method where we append the feature vetor with theluster of the word being labeled, where the lusters are learned by the IBM lass-based language model.7.3.2 Automati expansion of the datasetIn this setion we disuss a di�erent approah, where the training set is expandedwith automatially labeled examples from a large unlabeled orpus. This methodwas �rst proposed by Fürstenau and Lapata (2009) and is tailored to the spei�ase of weakly supervised learning for SRL.7.3.2.1 Original modelGiven a set of labeled verbs with annotated semanti roles, Fürstenau and Lapata(2009) automatially �nd for every annotated verb similar ourrenes of this verbin a large orpus of unlabeled texts. Given two ourrenes of the same verb atposition i with m dependents and at position j with n dependents, we de�ne amapping from i to j as an injetive funtion σ : Mi → Mσ(i) that maps a non-emptysubset Mi ⊂ {1, ..., m} from the m dependents at position i to a non-empty subset
Mσ(i) ⊂ {1, ..., n} from the n dependents at position j , where |Mi| = |Mσ(i)| anddi�erent dependents in the �rst ourrene are mapped to di�erent dependents inthe seond ourrene.For example, �gure 7.1 shows two ourrenes of the verb �makes�. For the�rst ourrene the verb has the diret dependents �Stevenson� and �equipment�,while in the seond ourrene this verb has diret dependents �Poland� and



SEMANTIC ROLE LABELING 93�mahinery�. This results in a mapping from words �Stevenson� to �Poland� andfrom �equipment� to �mahinery�.The similarity of this mapping is omputed from the semanti and syntatisimilarity between the mapped words and is given by
sim(σ) =

∑

k∈|Mi|

(

α · syn(wk, wσ(k)) + sem(wk, wσ(k)) − β
) (7.1)Here α is a onstant, weighting the importane of the syntati similarity

syn(wk, wσ(k)) ompared to semanti similarity sem(wk, wσ(k)), and β an beinterpreted as the lowest similarity value for whih an alignment between twoarguments is possible. syn(wk, wσ(k)) denotes the syntati similarity between thedependeny label of word wk and the dependeny label of word wσ(k). This valueis de�ned as 1 if the dependeny labels are idential, 0 < a < 1 if the labels are ofthe same type but of a di�erent subtype1 and 0 otherwise. The semanti similarity
sem(wk, wσ(k)) is estimated as the osine similarity between the ontexts of wkand wσ(k) in a large text orpus.The similarity between two ourrenes of the same verb on positions i and j isde�ned by

sim(wi, wj) = max
σ

sim(σ) (7.2)We thus �nd the mapping σ with highest similarity that maps dependents of verb
wi to similar dependents of verb wj and use this mapping to ompute the similarityof the ourenes at positions i and j. For every verb in the annotated training setwe �nd the s ourrenes of that verb in the unlabeled texts with the most similarontexts, given the best possible alignment. We then expand the training setwith these examples, automatially generating an annotation using the disoveredalignments. The variable s ontrols the trade-o� between annotation on�deneand expansion size. The �nal model is then learned by running the supervisedtraining method on the expanded training set. The values for s, a, α and β areoptimized automatially in every experiment on a held-out set (disjoint from bothtraining and test set).7.3.2.2 Inluding hidden wordsWe adapt this approah by employing a di�erent method for measuring semantisimilarity. Given two wordswi and wσ(i) we estimate the probability distribution of1Subtypes are �ne-grained distintions made by the parser suh as the underlying grammatialroles in passive onstrutions.



94 USING UNSUPERVISED MODELS FOR INFORMATION EXTRACTIONthe hidden word on these positions, whih we refer to with H(hi) = P (hi|w
Nt

1 , C, γ)and H ′(hσ(i)) = P (hσ(i)|w
Nt

1 , C, γ). We use the Jensen-Shannon (Lin, 1997)divergene to measure the distane between these two distributions, given by
JS(H(hi)||H

′(hσ(i))) =
1

2

[

D (H(hi)||avg) + D
(

H ′(hσ(i))||avg
)] (7.3)where avg =

H(hi)+H′(hσ(i))

2 is the average between the two distributions and
D (H(hi)||avg) is the Kullbak-Leibler divergene (Cover and Thomas, 2006) givenby

D (H(hi)||avg) =
∑

hi

H(hi)log(
H(hi)

avg(hi)
) (7.4)The Jensen-Shannon divergene is a positive number greater than or equal to 0that is loser to 0 if the two distributions are more similar. This divergene isonverted to a similarity value between 0 and 1 with

sim1(wi, wσ(i)) = exp(−λ × JS(H(hi)||H
′(hσ(i)))) (7.5)here λ is a onstant that is optimized on a held-out set.We also experiment with a similarity measure proposed by Lin (1998a). Thisauthor de�nes similarity between two distributions as the ratio of the informationshared by the two distributions and the information in every distribution separately.In our ase this translates to

sim2(wi, wσ(i)) =
2 ×

∑

hi
H(hi)H

′(hi)log(P (hi))
∑

hi
H(hi)log(P (hi)) +

∑

hi
H ′(hi)log(P (hi))

(7.6)where P (hi) is unigram probability of the hidden word hi, whih is independent of
H or H ′. In this similarity measure infrequent hidden words arry a relative higherweight then frequent hidden words. This weight is proportional to the informationontent log(P (hi)) of P (hi).We adapt the original expansion algorithm with these two similarity measures.Although these hanges might appear only a slight deviation from the originalmodel disussed by Fürstenau and Lapata (2009) it is potentially an important one,sine an aurate semanti similarity measure will greatly in�uene the aurayof the alignments, and thus of the auray of the automati expansion.7.3.3 Evaluation of weakly supervised SRLWe perform a number of experiments where we ompare the standard superviseddisriminative model with the di�erent weakly supervised methods proposed insetions 7.3.1 and 7.3.2.



SEMANTIC ROLE LABELING 955% 20% 50% 100%Disriminative 40.49% 67.23% 74.93% 78.65%HWFeatures 60.29% 72.88% 76.42% 80.98%ClassFeatures 59.51% 66.70% 70.15% 72.62%CosExp 47.05% 53.72% 64.51% 70.52%JSExp 45.40% 53.82% 65.39% 72.66%LinExp 51.84% 57.98% 67.39% 74.66%Table 7.2: Results (in F1-measure) on the CoNLL 2008 test set, omparing thestandard supervised lassi�er with di�erent weakly supervised lassi�ers, usingdi�erent portions of the full training set for training. See main text for details.HWFeatures Add the hidden words as probabilisti features.ClassFeatures Add the lass from a lass-based language model as extra feature.CosExp Expand training set, use osine for semanti distane.JSExp Expand training set, use Jensen-Shannon divergene on hidden words.LinExp Expand training set, use Lin's distane measure on hidden words.Table 7.2 shows the results of the di�erent supervised and semi-supervised methodson the test set of the CoNLL 2008 shared task. We experimented with di�erentsizes for the training set, ranging from 5% to 100%. When using a subset of thefull training set, we run 10 di�erent experiments with random subsets and averagethe results.We see that the HWFeatures method performs better than the other methodsaross all training sizes. Furthermore, these improvements are larger for smallertraining sets, showing that the approah an be applied suessfully in a settingwhere only a small number of training examples is available. When omparingthe HWFeatures method with the ClusterFeatures method we see that, althoughthe ClusterFeatures method has a similar performane for small training sizes,this performane drops for larger training sizes. A possible explanation of thisresult is the use of the lusters employed in the ClusterFeatures method. Byde�nition the lusters merge many words into one luster, whih might lead togood generalization (more important for small training sizes) but an potentiallyhurt preision (more important for larger training sizes).We ompare the di�erent methods for automati expansion (CosExp, JSExp andLinExp) to the supervised lassi�er and see that all three methods have improvedperformane for small training sizes, but redued performane for larger trainingsizes. An informal inspetion showed that for some examples in the training set,



96 USING UNSUPERVISED MODELS FOR INFORMATION EXTRACTIONlittle or no orret similar ourrenes were found in the unlabeled text. Thealgorithm however always adds the most similar s ourrenes to the training setfor every annotated example, also for these examples where little or no similarourrenes were found. In these ases the automati alignment often fails togenerate orret labels and introdues errors in the training set. In the futurewe plan experiments that determine dynamially (e.g. based on the similaritymeasure between ourrenes) for every annotated example how many trainingexamples to add.7.3.4 Related workThe most popular unsupervised models used for information extration arelustering methods that learn lusters of semanti and syntati similar words.These lusters are then used as extra features in the information extration task.Tang et al. (2001) uses the lusters from the lass-based Brown language model(Brown et al., 1992) in sentene parsing, but do not ompare their lassi�er to alassi�er without these lusters. These lusters are also used by Koo et al. (2008)in a syntati dependeny parser with an error redution of 14.29% omparedto a parser without these lusters, and by Zhao et al. (2009) in a multilingualdependeny parser. Miller et al. (2004) use hierarhial word lusters (optimizedfor bigram perplexity) in a disriminative named entity reognizer, ahieving a25% error redution ompared to a lassi�er without these lusters.We have shown that for WSD and SRL using the LWLM hidden words improvesauray ompared to the lusters from a lass-based language model, and we anthus safely assume that this will also hold for these other information extrationtasks.The researh losest to our work is Li and MCallum (2005), who use the softlusters derived by Gri�ths et al. (2005) in a supervised onditional random �eldlassi�er for part-of-speeh tagging and Chinese word segmentation, with an 14%error redution ompared to a lassi�er without these features.7.4 ConlusionsIn this hapter we have disussed a di�erent approah to weakly supervisedlearning: feed the strutures learned in an unsupervised model into a supervisedmodel trained for a ertain information extration task. We have disussed twomethods: use the hidden words or lusters as extra features and use these hiddenwords and lusters in a similarity measure to automatially expand the trainingset.



CONCLUSIONS 97For the seond approah we have performed a number of experiments where we usea similarity measure based on a osine distane, or on a distane metri that usesthe hidden words with the Jensen-Shannon divergene or Lin's similarity measure.We saw that these methods only outperformed the supervised lassi�er for smalltraining sets, beause of the inorret examples introdued by the automatiexpansion.Using the hidden words or lusters was a better approah that resulted ina signi�ant improvement over the supervised lassi�er for both word sensedisambiguation and semanti role labeling. This improvement was largest for smalltraining sets, showing that this method does suessfully redue the dependenyof the supervised model on large training orpora. Additionally this method alsooutperformed a method that uses lusters from a lass-based language model.Beause of its simpliity and independene of the spei� information extrationtask, we expet that this method an be employed almost e�ortless in other tasks,suh as named entity reognition or part-of-speeh labeling.





Part IIIAutomati annotation ofimages and video
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100Outline part III : Information extration for weak supervision ofimages and videoIn the previous hapters we have disussed various weakly supervised methodsand we have shown that these methods an be suessfully employed to improveinformation extration methods. We have however only onsidered labeled andunlabeled textual data, i.e. data in a single medium. We now turn to the aseof multimodal weakly supervised learning. In this part we disuss methods thatemploy information extration methods to aid the automati analysis of imagesand video.In hapter 8 we develop the appearane model whih �nds the entities present inan image by analyzing a text desribing this image. This model is subsequentlyused in two appliations, to align names in the text with faes in the image, andto perform textual image retrieval.Chapter 9 deals with the automati annotation of video. We �rst fous on theautomati annotation of ations of ators in the video, and apply the previouslydeveloped semanti role labeling system to the transripts of a video series. Ina seond task we ombine information extrated from the transript with anautomati analysis of the video to disover the di�erent senes in a video, andto derive the loation for every sene.This researh is motivated by the observation that frequently, the di�ulties faedby automati methods for image analysis are even greater than these faed bynatural language proessing methods, beause of the large variations in sale,lightning onditions and relative orientation of entities in images.The work in this part of the thesis is desribed in the following artiles:- Koen Deshaht and Marie-Franine Moens. Text Analysis for AutomatiImage Annotation. In Proeedings of the 45th Annual Meeting of theAssoiation for Computational Linguistis, Prague, 2007.- Koen Deshaht and Marie-Franine Moens. Finding the Best Piture:Cross-Media Retrieval of Content. In C. Madonald, I. Ounis, V. Plahouras& I. Ruthven (Eds.) Proeedings of the 30th European Conferene onInformation Retrieval. Leture Notes in Computer Siene 4956 (pp. 539-546), Springer, 2008.- Koen Deshaht, Marie-Franine Moens and Wouter Robeyns. Cross-MediaEntity Reognition in Nearly Parallel Visual and Textual Douments. InProeedings of the 8th RIAO onferene on Large-Sale Semanti Aess toContent (Text, Image, Video and Sound), USA, 2007.



101- Erik Boiy, Koen Deshaht and Marie-Franine Moens. Learning VisualEntities and their Visual Attributes from Text Corpora. In Proeedings ofthe 5th International Workshop on Text-based Information Retrieval, IEEEComputer Soiety Press, 2008.- Koen Deshaht and Marie-Franine Moens. Text Analysis for AutomatiImage Annotation, In Proeedings of the 19th Belgian-Duth Conferene onArti�ial Intelligene (Dastani, M. and de Jong, E., eds.), pp. 260-267, TheNetherlands, 2007.





Chapter 8Automati annotation ofimagesIn this hapter we desribe methods for the analysis of texts that desribe animage, with the goal of automatially reating annotations of images. This work ismotivated by fat that information extration methods on images fae even greaterdi�ulties than methods on text: entities for example often have dramatiallydi�erent appearanes in di�erent images, depending on pose, lighting onditions,distane to the subjet and other fators.We start by desribing the appearane model for entities in images (setion 8.1)and then extend this model to attributes (setion 8.2). In setion 8.3 we omparethis model to related researh and we see in setion 8.4 how it an be used in twoappliations: name and fae alignment (setion 8.4.1) and image retrieval (setion8.4.2). We onlude in setion 8.5.8.1 An appearane model for entitiesFigure 8.1 shows an example of an image-text pair, where the text desribes theentities that are present in the image. In this hapter we want to develop anautomati method that an determine from this desriptive text that e.g. �HillaryClinton�, �Bill Clinton�, �David Paterson� and �Eliot Spitzer� are entities thatare likely to appear in the image. We limit this analysis to text only, withoutonsidering any information present in the images.To solve this task we propose the appearane model. This model assigns toevery entity in the text a probability of this entity being present in the image.103



104 AUTOMATIC ANNOTATION OF IMAGESNew York State Sen. Hillary Clinton elebratesafter making her nomination aeptane speehalong with husband and former U.S. PresidentBill Clinton, left, David Paterson, seondright, and gubernatorial andidate Eliot Spitzer,right, during the New York State DemoratiConvention in Bu�alo, N.Y., on Wednesday, May31, 2006. Paterson is running for the New YorkState Lt. Governor's o�e.Figure 8.1: Example image-text pair.We �rst detet all entities (setion 8.1.1), and determine for every entity itsvisualness (setion 8.1.2) and saliene (setion 8.1.3), whih are then ombinedin the appearane model (setion 8.1.4). Finally we evaluate our model in setion8.1.5.8.1.1 Entity detetionTo detet all entities in the text we rely on existing tools for named entityreognition and part-of-speeh tagging.We use an existing named entity reognition pakage to reognize person names inthe text. The OpenNLP pakage1 detets noun phrase hunks in the sentenes thatrepresent persons, loations, organizations and dates. To improve the reognitionof person names, we use a ditionary of names, whih we have extrated from theWikipedia2 website. The noun phrase o-referents in the texts that are in the formof pronouns (e.g. �he�, �she�) are resolved with the LingPipe3 pakage.We use LTPOS (Mikheev, 1997) to perform part-of-speeh tagging (i.e., detetingthe syntati word lass suh as noun, verb, et.) and assume that every nounphrase in the text represents an entity.8.1.2 VisualnessAny given text ontains a large number of entities. We �rst develop a soft �lterthat assign to every entity in the text a probability that this entity is visual, e.g.that it an be pereived visually. Example of entities that an be pereived visually1http://opennlp.soureforge.net/2http://en.wikipedia.org/3http://www.alias-i.om/lingpipe/



AN APPEARANCE MODEL FOR ENTITIES 105are �ar� and �house�, while �agreement� or �thought� an not be expeted to bediretly pereived visually.We �rst determine the meaning of all entities in the text with respet to theWordNet database and then employ a distane metri together with a number ofseed synsets to ompute the visualness.Word sense disambiguation After we have performed entity detetion, we wantto lassify every entity aording to the WordNet semanti database (Fellbaum,1998). We use the word sense disambiguation (WSD) system desribed in hapter3. Additionally we assign all person names deteted by the named entity reognizerto the synset that orresponds to a human being.WordNet similarity We determine the visualness for every synset using a methodthat is inspired by Kamps and Marx (2002). Kamps and Marx use a distanemeasure de�ned on the adjetives of the WordNet database together with two seedadjetives to determine the emotive or a�etive meaning of any given adjetive.They ompute the relative distane of the adjetive to the seed synsets �good� and�bad� and use this distane to de�ne a measure of a�etive meaning.We take a similar approah to determine the visualness of a given synset. We �rstde�ne a similarity measure between synsets in the WordNet database. Then weselet a set of seed synsets, i.e. synsets with a prede�ned visualness, and use thesimilarity of a given synset to the seed synsets to determine the visualness.Distane measure The WordNet database de�nes di�erent relations between itssynsets. An important relation for nouns is the hypernym/hyponym relation. Anoun X is a hypernym of a noun Y if Y is a subtype or instane of X. For example,�bird� is a hypernym of �penguin� (and �penguin� is a hyponym of �bird�). A synsetin WordNet an have one or more hypernyms. This relation organizes the synsetsin a hierarhial tree (Hayes, 1999).The similarity measure de�ned by Lin (1998b) uses the hypernym/hyponymrelation to ompute a semanti similarity between two WordNet synsets S1 and
S2. It is based on the intuition that entities lose in the hypernym tree shouldhave a high similarity. The method �rst �nds the most spei� (lowest in the tree)synset Sp that is a parent of both S1 and S2. Then it omputes the similarity of
S1 and S2 as

sim(S1, S2) =
2logP (Sp)

logP (S1) + logP (S2)



106 AUTOMATIC ANNOTATION OF IMAGESHere the probability P (Si) is the probability of labeling any word in a text withsynset Si or with one of the desendants of Si in the WordNet hierarhy. Weestimate these probabilities by ounting the number of ourrenes of a synset inthe Semor orpus (Fellbaum, 1998; Landes et al., 1998), where all noun hunksare labeled with their WordNet synset. The probability P (Si) is omputed as
P (Si) =

C(Si)
∑N

n=1 C(Sn)
+
∑K

k=1 P (Sk)where C(Si) is the number of ourrenes of Si, N is the total number of synsetsin WordNet and K is the number of hildren of Si. The WordNet::Similaritypakage (Pedersen et al., 2004) implements this distane measure and was used bythe authors.Seed synsets We have manually seleted 25 seed synsets in WordNet, where wetried to over the wide range of topis we were likely to enounter in the testorpus. We have set the visualness of these seed synsets to either 1 (visual) or0 (not visual). We determine the visualness of all other synsets using these seedsynsets. A synset that is lose to a visual seed synset gets a high visualness andvie versa. We hoose a linear weighting:
vis(s) =

∑

i

vis(si)
sim(s, si)

C(s)where vis(s) returns a number between 0 and 1 denoting the visualness of a synset
s, si are the seed synsets, sim(s, t) returns a number between 0 and 1 denotingthe similarity between synsets s and t and C(s) is onstant given a synset s:

C(s) =
∑

i

sim(s, si)8.1.3 SalieneNot all entities disussed in a text are equally important. We would like to disoverwhat entities are in the fous of a text and what entities are only mentionedbrie�y, beause we presume that more important entities in the text have a largerprobability of appearing in the image than less important entities. We de�nethe saliene measure, whih is a number between 0 and 1 that represents theimportane of an entity in a text. We present here a method for omputing thissore based on an in depth analysis of the disourse of the text and of the syntatistruture of the individual sentenes.



AN APPEARANCE MODEL FOR ENTITIES 1078.1.3.1 Disourse segmentationThe disourse segmentation module, whih we developed in earlier researh,hierarhially and sequentially segments the disourse in di�erent topis andsubtopis resulting in a table of ontents of a text (Moens, 2008). The tableshows the main entities and the related subtopi entities in a tree-like struturethat also indiates the segments to whih an entity applies. The algorithm detetspatterns of themati progression in texts and an thus reognize the main topiof a text (i.e., about whom or what the text speaks) and the hierarhial andsequential relationships between individual topis. A mixture model, taking intoaount di�erent disourse features, is trained with the Expetation Maximizationalgorithm on an annotated DUC-2003 orpus. We use the resulting disoursesegmentation to de�ne the saliene of individual entities that are reognized astopis of a sentene. We ompute for eah noun entity er in the disourse itssaliene (Sal1 ) in the disourse tree, whih is proportional with the depth of theentity in the disourse tree -hereby assuming that deeper in this tree more detailedtopis of a text are desribed- and normalize this value to be between zero andone. When an entity ours in di�erent subtrees, its maximum sore is hosen.8.1.3.2 Re�nement with sentene parse informationThe segmentation module already determines the main topi of a text. Sine thesyntati struture is often indiative of the information distribution in a sentene,we an determine the relative importane of the other entities in a sentene byrelying on the relationships between entities as signaled by the parse tree. Whendetermining the saliene of an entity, we take into aount the level of the entitymention in the parse tree (Sal2 ), and the number of hildren for the entity in thisstruture (Sal3 ), where the normalized sore is respetively inversely proportionalwith the depth of the parse tree where the entity ours, and proportional withthe number of hildren.We ombine the three saliene values (Sal1, Sal2 and Sal3 ) by using a linearweighting.
sal(ei) = α1Sal1 + α2Sal2 + α3Sal3We determine oe�ients for these three values on a held-out orpus, and set themto α1 = 0.8, α2 = 0.1 and α3 = 0.1.



108 AUTOMATIC ANNOTATION OF IMAGESCleveland Cavaliers' LeBron James (23) shootsbetween Detroit Pistons' Rihard Hamilton, left,and Chauney Billups late in the fourth quarterof the Pistons' 84-82 win in a seond-roundNBA playo� basketball game Friday, May 19,2006, in Cleveland. The series is tied at threegames eah.LeBron James 0.83 Chauney Billups 0.39 Rihard Hamilton 0.31Cavaliers 0.17 Cleveland 0.13 Pistons 0.10Figure 8.2: Image-text pair with automati extrated entities and preditedprobabilities.8.1.4 Appearane modelThe appearane model for entities ombines the visualness and saliene measures.We want to alulate the probability of the ourrene of an entity eim in theimage, given a text t, P (eim|t). We assume that this probability is proportionalwith the degree of visualness and saliene of eim in t. In our framework, P (eim|t)is omputed as the produt of the saliene of the entity eim and its visualnesssore, as we assume both sores to be onditionally independent, given the valueof ei.
app(ei) = sal(ei) × vis(ei)8.1.5 Evaluation of the appearane modelIn this setion we evaluate our approah on a real world orpus of near-parallelimage-texts pairs.8.1.5.1 Data setWe use a parallel orpus4 onsisting of 100 images-text pairs that were randomlyseleted out of a larger orpus of 1700 text pairs. The images and their aptions4We thank Yves Gu�et from the INRIA researh team (Grenoble, Frane) for olleting thisdataset.



AN APPEARANCE MODEL FOR ENTITIES 109are retrieved from the Yahoo! News website5 and are similar to the �Faes in thewild� benhmark orpus (Huang et al., 2007). The aptions will in general disussone or more persons in the image, possibly one or more other objets, the loationand the event for whih the piture was taken. An example of an image-text pairis given in �g. 8.2. Not all persons or objets who are pitured in the images areneessarily desribed in the texts and vie versa.Every image-text pair is annotated by one annotator, who has labeled the entities(i.e. persons and other objets) that appear in the text, the entities that appear inthe image and the entities that appear in both. Fig. 8.2 shows an example image-text pair, where "Lebron James" �Chauney Billups� and �Rihard Hamilton� arethe only entities that appear both in the text and in the image. On average thetexts ontain 15.04 entities, of whih 2.58 appear in the image.8.1.5.2 ExperimentsWe test a number of methods on the Yahoo! News orpus (table 8.1), usingombinations of the methods disussed. A �rst method (Ent) uses only the entitydetetion, ahieving a preision of 15.62% and reall of 91.08%. The low preisionis aused by the fat that many entities in the texts are not visible in the image.Although these results indiate that this is a very naive baseline, it is in fatused quite often (see setion 8.3). The seond test (Ent+Vis) uses the seletedentities together with a stati ut-o� value6 on the visualness measure, ahieving apreision of 48.81% and a reall of 87.98%. Although this method is already moresuessful in seleting the right entities is still su�ers from the problem that alsoentities in the text that ould be present on the image, are not neessarily so.The third method (Ent+Sal) uses the entity seletion together with a ut-o� on thesaliene measure, whih results in 66.03% preision and 54.26% reall. This showsthat also the saliene measure alone is not su�ient to selet the orret entities.Our �nal method (Ent+Vis+Sal) ombines entity detetion with a stati ut-o�value of the ombined visualness and saliene measures. This method ahieves
70.56% preision and 67.82% reall, whih is the best result of the evaluatedsystems, both in terms of preision and f1-measure (69.39%).Although the presented methods are quite suessful in annotating the imageswithout an analysis of the images themselves, it is interesting to see what arethe most important fators for the inorret annotations. We have manuallyevaluated the performane of the di�erent tehniques on this orpus. Both namedentity reognition and part-of-speeh tagging were quite aurate with 93.37%and 98.14% preision and 97.69% and 97.36% reall respetively. The visualness5http://news.yahoo.om/6All ut-o� values in this setion were manually seleted based on a small set of held-outannotated examples.



110 AUTOMATIC ANNOTATION OF IMAGESpreision reall F1-measureEnt 15.62% 91.08% 26.66%Ent+Vis 48.81% 87.98% 62.78%Ent+Sal 66.03% 54.26% 59.56%Ent+Vis+Sal 70.56% 67.82% 69.39%Table 8.1: Evaluation of di�erent methods for automatially annotating entitiesin images, using entity reognition (Ent), the visualness (Vis) and saliene (Sal)measures, and ombinations hereof.�Afrian violets (Saintpaulia ionantha) are small, �oweringhouseplants or greenhouse plants belonging to the Gesneriaeaefamily. They are perhaps the most popular and most widely grownhouseplant. Their thik, fuzzy leaves and abundant blooms in softtones of violet, purple, pink, and white make them very attrative.Numerous varieties and hybrids are available. Afrian violets growbest in indiret sunlight.�Figure 8.3: Example setion of the plants orpus.measure (with stati ut-o�) has an auray of 79.56%, where the errors aremainly aused by inorret word sense disambiguation (63.10%) and in a lesserextent by the distane measure (36.90%). We did not evaluate the saliene measure,sine it is not trivial to exatly pin-point the most important entities in a text. Foran evaluation of the disourse segmentation module we refer to (Moens, 2008).8.2 A orpus based visualness measureThe work desribed in this setion is joint work with Erik Boiy and Marie-Franine Moens.We extend the visualness measure de�ned in the previous setion. We make twoextensions, �rst we perform a study of tehniques to ompute this visualnessusing orpus based assoiation tehniques. Seondly we ompute the visualnessof entities and attributes, where attributes are usually expressed by adjetives,suh as �white�, �small�, and �wooden�. We �rst disuss orpus based assoiationtehniques (setion 8.2.1) and an extension of the previously de�ned WordNetsimilarity for adjetives (setion 8.2.2). These two tehniques are then ombined(setion 8.2.3) and evaluated (setion 8.2.4).



A CORPUS BASED VISUALNESS MEASURE 111�Rebirth refers to a proess whereby beings go through a suession oflifetimes as one of many possible forms of sentient life, eah running fromoneption to death. It is important to note, however, that Buddhismrejets onepts of a permanent self or an unhanging, eternal soul, as itis alled in Christianity or Hinduism. [...℄�Figure 8.4: Example setion of the religion orpus.8.2.1 Corpus-based assoiation tehniquesAssoation tehniques provide methods to deide whether two observations ourmore frequently together then would be expeted due to hane. Popular measuresare the hi-square metri and the likelihood ratio (Dunning, 1993). Severalresearhers have used these tehniques to �nd word olloations (e.g. �the redross�, �the white house�) (Dunning, 1993; Smadja, 1994), for automati lexiononstrution (Roark and Charniak, 1998) or for lassi�ation of words along aertain dimension (Turney, 2002).We have downloaded a olletion of desriptions of the appearanes of �owers andplants, whih an be onsidered to ontain mostly visual entities and attributes (plants orpus, �gure 8.3) and all artiles in the English wikipedia on religion, whihan be onsidered to ontain mostly non-visual entities (religion orpus, �gure 8.4).We then use the χ2-test (Cherno� and Lehmann, 1954) to deide whether a wordis should be onsidered visual or not. More spei�ally we ompute the χ2 valueand onsider all words (both nouns and adjetives) above a ertain threshold tobe visual.8.2.2 WordNet similarity for adjetivesPreviously we have used WordNet to ompute the visualness measure for entities.For adjetives we use a similar approah but have to use a di�erent distanemeasure sine WordNet does not de�ne a hypernym/hyponym relation betweenadjetives. In stead we use the similarity measure of Lesk (1986), where thesimilarity between two synsets is de�ned as the overlap between the words inthe textual desriptions of these synonyms. As for the entities we pik 25 seedadjetives and manually set their visualness to 0 or 1.8.2.3 Combining assoiation tehniques and WordNet distaneThe orpus based assoiation metri gives a list of adjetives and nouns that areranked aording to χ2-value, where words that have are higher ranked an be



112 AUTOMATIC ANNOTATION OF IMAGES�These small sulptures depit two idential human �gures. Thewooden bodies are weathered brown and the hair is faded blue.Both sulptures have a round base about one inh high. The feetare large and �at, with grooves ut into the front to distinguishtoes. The legs are short [...℄�Figure 8.5: Example of the art orpus.expeted to be more visual. We use this fat to automatially selet the seedsynsets used for the WordNet similarity measure. For both nouns and adjetiveswe selet the 13 highest (e.g. with large, positive χ2 value, thus having a positiveorrelation) and 12 lowest ranked synsets (e.g. with low, negative χ2 value,thus having a negative orrelation) and set their visualness respetively to 1 and
0. The seeds are thus hosen automatially, making the visualness measure anunsupervised metri.8.2.4 Evaluation of orpus based visualnessWe evaluate the proposed tehniques on a third orpus, that ontains a mix ofvisual and non-visual entities and attributes. The orpus onsists of a olletionof desriptions of works of art together with an elaborate history of the objet andthe artist, and will heneforth be known as the art orpus (�gure 8.5). A olletionof these desriptions are manually annotated where every attribute and entity islabeled as visual or non-visual.For every tehnique we manually set a stati ut-o� value on a small number ofheld-out desriptions. Table 8.2 shows the results for the di�erent methods. We�rst see that the orpus based method performs muh better for attributes thanfor entities, whih is mainly aused by a low reall on the entities. We hypothesizethat this an be attributed to the fat that attributes are more generi and anthus more easily be transferred to a di�erent orpus. A seond observation thatan be made from table 8.2 is that the WordNet based method outperforms theorpus based method for entities but performs worse for attributes. Finally wesee that the automati seletion of seed sets improves the results of the WordNetbased method.



RELATED RESEARCH 113preision reall F1-measureattribs ents attribs ents attribs entsorpus 88.26% 81.71% 80.15% 50.95% 84.01% 62.76%wordnet 81.13% 82.02% 50.15% 62.02% 61.98% 70.63%ombination 87.80% 82.67% 53.25% 66.22% 66.30% 73.54%Table 8.2: Evaluation of di�erent methods for automatially annotating entities(ents) and attributes (attribs) in images, using assoiation tehniques on(orpus), WordNet similarity (wordnet) and the ombination of these tehniques(ombination).8.3 Related ResearhIn reent years many researhers have worked on ombining information found inimages and assoiated texts. We limit our review to researh that uses assoiatednatural language texts suh as aptions or transripts, ignoring approahes that usemanually annotated keywords, sine we are interested in methods to automatiallyselet words that desribe the image.Named entity reognition is used by researhers interested in ombining namesin texts with faes in images. Most of these researhers assume that all personsare equally likely to appear in the image (Yang et al., 2004; Ozkan and Duygulu,2006; Guillaumin et al., 2008). Other researhers aknowledge that this an beimproved by having a measure that aptures how likely people to appear in theimage. Yang et al. (2005) selet only persons that perform a monologue speehsine these are more likely to appear in the video, while Satoh et al. (1999) use arudimentary approah to disourse analysis that takes into aount the position ofthe person in the transript and the verbs that o-our with this person, wherea small manual seletion of verbs is given a high sore and all other verbs a lowersore. Regretfully these two publiations do not evaluate their approahes. Berget al. (2004) onstrut a more elaborate ontext model to determine whih personsappear in the image. This model inludes the part-of-speeh tags on both sides ofthe person name, the distanes to the nearest speial token (�,�, �.�, �(�, �)�, �(L)�,�(R)� or �(C)�), and the loation of the name in the aption. The parametersof this model are then learned in an unsupervised manner, whih results in alassi�er that has an auray of 84%, where a baseline approah that assumesthat all persons appear in the image ahieves an auray of 67%. Contrary to ourresearh this method takes into aount highly orpus spei� ontext ues anddoes not onsider objets other then persons. Furthermore errors in the namedentity reognition system are not taken into aount in the evaluation, althoughthe previously reported auray of the employed reognizer was between 80% and
90% (Cunningham et al., 2002).



114 AUTOMATIC ANNOTATION OF IMAGESOther researhers do not limit the text analysis to person names, although alsohere typially word seletion is onsidered a preproessing step and is given littleattention. Jain et al. (2007) for example do not perform word seletion, Mori et al.(2000) selet nouns and adjetives when they our above a ertain frequeny inthe entire orpus, Westerveld (2000) lemmatises all words in the aptions anduses words that our at least in two di�erent douments, Amir et al. (2005)perform stop-word removal and Porter stemming and assign tf ∗ idf weights to theremaining words and Westerveld et al. (2005) use a (retrieval) language modellingapproah that interpolates a ML model for the text assoiated with the shot, withone assoiated to the sene, the video and the olletion. None of these publiationsevaluate word seletion separately.Following our publiations (Deshaht and Moens, 2007; Deshaht et al., 2007)we have seen more researh on this task. Kliegr et al. (2008) perform entitydetetion in a similar manner as presented here, however a more advaned methodis employed to map person names to WordNet. Where we mapped all personnames to the synset representing a �human being�, the authors perform a more �ne-grained mapping where for example �David Bekham� is mapped to �footballer�.This is aomplished by automatially learning hypernym relationships from alarge orpus using Hearst-style patterns (Hearst, 1992), with an auray of 85%.The synsets are then manually lassi�ed aording to visualness. Leong andMihalea (2009) have adapted our work to automatially annotate all elementsof an image, and not only entities. They learn a visualness measure from a largeorpus and modify the saliene measure to inlude two other lues: semantiloud, whih aptures whih words are more �entral� to a ertain topi andlexial distane, whih is the distane of words to the image. They ahieved an
F1-measure of 54.21% on a orpus of 180 images and orresponding web pages,ompared to a tf ∗ idf baseline of 41.48%. Xia et al. (2009) aim at annotatingimages with full sentenes. They use the visualness measure together with a latentsemanti analysis of words and features extrated from the image to generate aset of andidate keywords for a given image. From a large orpus, all sentenesthat ontain at least two of these keywords are ranked aording to frequeny onthe world wide web. The auray of their method was not evaluated.8.4 Appliations of the appearane modelIn this setion we see two appliations of the appearane model. We will see how itan be used to align names and faes (setion 8.4.1) and to improve image retrieval(setion 8.4.2).



APPLICATIONS OF THE APPEARANCE MODEL 1158.4.1 Alignment of names and faesThe work desribed in this setion was performed by Phi The Pham, Marie-FranineMoens and Tinne Tuytelaars.One of the goals of the appearane model is the reation of annotations for imagesthat an be used to train an image lassi�er or detetor. In this setion we disusswork performed in (Pham et al., 2010) that learns from a orpus of images withassoiated aptions, a probabilisti alignment of names in the aptions with faesin the image.The �Labeled Faes in the Wild� dataset (Huang et al., 2007) is similar to thedataset disussed earlier and ontains 11820 images with their aptions that havebeen downloaded from a Yahoo! news. Typially an image ontains multiplefaes, the aption ontains multiple names, and not every fae in the image has aorresponding name in the aption and vie versa. Pham et al. (2010) developedan iterative EM proedure to align every fae with it's orret name. This is a non-trivial task sine faes ontain a lot of variation due to faial expressions, pose andlighting onditions, and also person names are used in di�erent ways (e.g. �GeorgeW. Bush�, �President Bush� and �George Bush�).First all names in the aptions are deteted (using the previously desribed namedentity reognizer) and lustered based on automatially deteted oreferene hains.The faes are automatially deteted using a fae detetor and lustered based ona osine metri on the parameters of a 3D morphable fae model. An initialalignment of names and faes is learned from o-ourrene of the fae lusterswith the name lusters in the dataset. This estimate is iteratively updated usingan EM-algorithm.Although the visualness measure is not used (sine persons reeive a visualnesssore of 1), the experiments performed show that approahes that employ thesaliene measure onsistently outperform approahes that assume that all personsin the aption are equally likely to appear in the image. The best system testeduses the saliene measure for the names and the namedness for the faes, whihestimates the probability that a fae will be desribed in the text. This systemahieved an F1-measure of 72.23% on a large test set of 10977 image-text pairs.8.4.2 Textual retrieval of imagesIn this setion we disuss an appliation of the appearane model: the retrieval ofimages from the world wide web. Our goal is to �nd the best images of a givenentity (or entities) in a olletion of pitures that have assoiated texts in the formof desriptive sentenes, where every piture an depit possibly multiple personsor objets. Although most researh on image retrieval is on an automati analysis



116 AUTOMATIC ANNOTATION OF IMAGESof the image (Datta et al., 2008), ommerial searh engines today still use thetext surrounding the image as a major lue to the image's ontent. Sine we havefound that the appearane model o�ers a reasonable aurate representation ofthe image ontent, it is interesting to see to what extent this model an be usedfor the retrieval of images.In setion 8.4.2.1 we integrate the appearane model in a retrieval model, whihwe evaluate in setion 8.4.2.2.8.4.2.1 Probabilisti ross-media retrieval modelStatistial language modeling has beome a suessful retrieval approah (Croftand La�erty, 2003). A textual doument is viewed as a model and a textualquery as a sequene of words randomly sampled from that model. Let the querybe omposed of one or more query word qi, whih are proper names or nounsrepresenting a person or objet. The language model for retrieval then omputesthe probability that the query [q1...qm] is generated by image Ij

P (q1, ..., qm|Ij) =
m
∏

i=1

((1 − λ)P (qi|Ij) + λP (qi|C)) (8.1)where C represents the olletion of douments and λ is a smoothing fator between
0 and 1. The probability P (qi|C) is alled the orpus model and assigns a non-zeroprobability to every word in the orpus proportional to the relative frequeny ofthat term. The probability P (qi|Ij) is the probability of the image Ij generatingthe query term qi. We estimate this probability from the text Tj assoiated tothe image (e.g. the aptions), and onsider a number of methods. A �rst method(bag-of-words, BOW) estimates this probability as

PBOW (qi|Ij) ∼ n(qi)where n(qi) is the number of ourrenes of word qj in Tj and k ranges over allwords in Tj . A di�erent method takes into aount whether a word expresses anentity (or is part of a multi-word expression of an entity).
P (qi|Ij) ∼

{

n(qi) ∗ w(ei) if qi expresses an entity ei

0 otherwiseHere w(ei) is a weight assigned to the entity ei expressed by the word qi. A �rstmodel (BOE) assumes that all entities are weighted equally, i.e. w(ei) = 1. Wethen de�ne a number of models that set the weight respetively to the visualness(VIS), to the saliene (SAL) or to the appearane sore of that entity (APP). We



APPLICATIONS OF THE APPEARANCE MODEL 117Donald Trump
...Bill Clinton

...Figure 8.6: Ground truth ranking (left to right, top to bottom) for two examplequeries. Images are ranked higher if they ontain fewer entities and if the queriedentity is more prominent in the image. Images in the dataset are all approximatelythe same size and this fator is not taken into aount for the ranking.have adapted the Lemur toolkit7 to inlude these retrieval models, using a λ equalto 0.1.8.4.2.2 Evaluation of the appearane retrieval modelDataset Beause of the lak of a standard dataset that �ts our tasks andhypotheses, we annotated our own ground truth orpus. We randomly selet 700image-text pairs from the Yahoo! news orpus disussed in setion 8.1.5.1. In thisseletion, many images piture only a single person or objet. This makes retrievaleasy, sine these images should be ranked at the top, and we refer to this datasetas the EASYSET. From this set we selet a subset of pitures where three or morepersons or objets are shown, whih varying degree of prominene in the image.We all this dataset that omprises 380 image-text pairs the DIFFICULTSET.Tests on the latter set allows us to better understand the behavior of our di�erentindexing methods when many persons or objets with varying degree of promineneare shown in the photographs.We have randomly generated a number of queries as follows: assuming that thequeries re�et the orpus used for retrieval, we selet 79 images from this orpus,7http://www.lemurprojet.org/



118 AUTOMATIC ANNOTATION OF IMAGESBOW BOE VIS SAL APEASYSET 58.12% 62.46% 55.62% 56.25% 59.28%DIFFICULTSET 70.48% 73.46% 71.16% 69.54% 71.70%Table 8.3: Results in terms of mean average preision for the ranking models basedon the di�erent text representations for the EASYSET and DIFFICULTSET.and for every seleted image reate a query by onatenating all entities in thisimage. In this way we obtained 53 queries that ontain one name of a person orobjet, and 26 queries with two entities (23 queries with two person names and 3queries with a person and objet name). For every query we ranked all images inthe orpus that ontained these entities aording to the prominene of the entitiesin the images. Rankings for two examples queries an be see in �gure 8.6.Experiments For every query we rank all douments in the olletion using themethods de�ned above, and ompare the automati rankings with the manualrankings using the mean average preision metri (table 8.3).First, we see that the appearane measure (AP) improves the retrieval modelompared to the baseline (BOW) method. This measure determines approximatelyhow many entities in a given text are likely to appear in the image, and thus toreate a more �ne-grained ranking (sine images with a small number of entities arepreferred above images with a large number of entities). However, disappointinglythis method, and all other methods are outperformed by the bag-of-entities (BOE)method, showing that the prominene is su�iently aptured by the maximumlikelihood estimation of the term ourrene in the text. This is aused by astrong orrelation between the length of a aption and the number of entitiesshown in the orresponding image. Another important fator is that the queriesby de�nition only ontain entities that an be pereived on the images, thusmaking an automati analysis of the visualness of entities super�uous. Also theoasional mislassi�ation of entities by the appearane model (see table 8.1.5),redues the auray of the automati ranking. These unexpeted results showthat information retrieval has di�erent requirements then information extration,and that an improved method for the latter does not neessary improve the former.8.4.2.3 Related workImage retrieval is a well studied problem with a large body of researh, we referto Smeulders et al. (2000) and Datta et al. (2008) for extensive overviews. Mostresearh however fouses on ontent-based image retrieval, i.e. on methods that



CONCLUSION 119perform an automati analysis of the images while only few researh of usingassoiated natural language texts has been performed.Smeaton and Quigley (1996) and Flank et al. (1995) develop retrieval modelsfor image aptions based on respetively a WordNet distane or on �nite statemahines representing the syntati struture of a sentene. These approahesshould however be onsidered generi information retrieval models sine they arenot designed spei�ally for image retrieval. The WebSEEk searh engine Changet al. (1997) uses a manual lassi�ation of terms in assoiated web-pages asvisual or non-visual. The visual terms are further manually mapped into di�erentategories. The performane of this method is not reported.The ImageClef 2009 shared task on image retrieval (Paramita et al., 2009)ompares a number of systems that perform image retrieval on a orpus of almost
500.000 images with assoiated aptions, similar to the orpus employed here.Given a query onsisting of textual keywords and an example image, the systemsperformed a ranking of all image-text pairs in the system. All the partiipatingsystems used standard retrieval models to ompare the key words with the aptions,whih suggests that for this type of data a more elaborate analysis of the aptionsdoes not improve retrieval performane.The experiments performed by Xia et al. (2009) suggest that an analysis oflanguage is neessary however when the texts assoiated with the images arelonger and ontain more words that do not desribe the image. Xia et al. (2009)performed experiments where, for a given textual query, a ranking was reated ofimages based on text extrated from the ontaining web page. They found thata retrieval model that uses the visualness measure outperforms a tf ∗ idf basedlanguage model by 15% to 20%.8.5 ConlusionIn this hapter we have introdued the appearane model, onsisting of an analysisof the text ombined with external knowledge. We have designed a method toapture the saliene of the entities, based on analysis of the disourse of the textand of the syntati struture of the sentenes. We have ombined this with anew model of the visualness of the entities, that employs a distane metri de�nedon WordNet together with a small number of seed synsets. We have shown thatthis method an predit whih entities and attributes are present in an image,without performing an analysis of the image itself. We have then desribed twoappliations of this model: the alignment of names and faes and image retrieval.It was shown in these experiments that the saliene model helps to auratelyalign names and faes by indiating whih persons are more likely to appear inthe image. We then saw that, although existing retrieval models are su�ient for



120 AUTOMATIC ANNOTATION OF IMAGESshort aptions, the visualness model did help for text pages that ontained longertexts with more entities not visible in the image.



Chapter 9Automati annotation ofvideoIn the previous hapter we have disussed the di�ulties faed by automatimethods for the analysis of images, and how automatially generated annotationsfrom assoiated texts an improve these methods by providing a weak labeling.The analysis of video data however provides even greater di�ulties for automatimethods. In this hapter we disuss methods that automatially generateannotations for video data using assoiated texts or transripts. We fous ontwo types of annotations: visual ations and their semanti roles (setion 9.1)and loations of senes (setion 9.2). These annotations an then be used tohelp methods that perform an automati analysis of the video. We onlude thishapter in setion 9.3.9.1 Visual ation annotationIn this setion we investigate methods for the automati annotation of ationsin video. To this end we apply the previously developed semanti role labelingsystem to semanti roles of visual verbs. We introdue this task in setion 9.1.1and desribe the role de�nitions in setion 9.1.2. We evaluate the dataset usedin this appliation in setion 9.1.3 and evaluate it in setion 9.1.4. Finally wedesribe its use in automati annotation in setion 9.1.5.
121



122 AUTOMATIC ANNOTATION OF VIDEOMovement A person moving voluntarily from one position to another (�Bu�y walks in theroom�).Objet manipulation A person manipulating or moving an objet (�.. Bu�y opening therefrigerator�).Body position A verb desribing the position or pose of the body of a person (�.. Bu�y leansforward..�).State A verb that desribing the stationary state of an objet or person, di�erent from the bodyposition (�... Dawn is hained to the wall.�).Express emotion A person expressing some emotion (�Dawn shrugs in embarrassment�).Fighting Ations performed by a person in a �ght (�... Harmony bakhands Anya�).Camera ation The amera zooming in or out or moving with respet to the sene (�Theamera pans aross a bedroom�).Visual Any visual verb that does not belong to one of the above ategories (�.. Bu�y talkingto Giles�).Table 9.1: Semanti frames for automati video annotation.9.1.1 IntrodutionAtion detetion and lassi�ation in video is a hard task that has only reentlybeen approahed outside laboratory onditions, and is typially still limitedto a small number of ations (Laptev et al., 2008). Furthermore the manualsegmentation and labeling of ations in video is a labour-intensive and error-pronetask. Following our work on automati image annotation in the previous hapter,we would like to develop methods for the automati annotation of ations andtheir arguments (i.e. semanti roles) in videos. We are hereby only interested invisual ations and arguments, i.e. ations and arguments that an be pereivedin a single frame or in a sequene of video frames. This work will show that wean easily adapt our semanti role lassi�er to di�erent sets of semanti roles andframes.9.1.2 Semanti rolesThe PropBank semanti roles desribed in setion 4 de�ne a set of semanti rolesand a set of senses for every verb separately. This de�nition is however not veryuseful for automati image annotation sine typially it is required to generalizeaross di�erent verbs. We thus de�ne a new set of semanti frames that aremotivated by the requirements of automati image analysis: all verbs labeled withan idential frame should have a more or less similar visual appearane in the



VISUAL ACTION ANNOTATION 123Agent The person or objet performing the ation (�Bu�y walks in the room�).Causative agent The person or objet that fore another person or objet into the ation(�Bu�y pushes her bak�).Patient The person or objet fored into the ation (�Bu�y pushes her bak�).From position The initial position before movement (�Bu�y piks up a banana from a bowlof fruit�).To position The �nal position after movement (�she rashes to the �oor�).Emotion The emotion that is expressed (�Bu�y's fae looks very peaeful�).Negation The word indiating negation of a ertain ation (�Willow does not notie herexpression�).Table 9.2: Semanti roles for automati video annotation.video, and vie versa. Furthermore the de�nitions should re�et the ations thatour frequently in the dataset used and should inlude ations of the amera (e.g.�zoom�), whih is potentially useful for visual ation detetion methods. In dialogwith researhers more experiened in video analysis and taking into aount thedataset, we have reated a new set of frames (listed in table 9.1) and semantiroles (table 9.2).9.1.3 DatasetWe apply the proposed semanti frames and roles to the transripts of a popularation series, Bu�y, the Vampire Slayer. This Amerian TV series stars Bu�ySummers and her friends as they �ght vampires and other demons. It o�ersan interesting testbed for our automati annotation tehniques: beause of itslarge popularity, fans have reated transripts for all episodes that o�er detaileddesriptions of the video and the dialog. These transripts ontain informationon the ations of the haraters, their emotions and of the loations of the senes.This information is however all embedded in running text and need to be extratedwith information extration tehniques. Also the video o�ers a realisti testbedfor video analysis beause of the hallenging lightning onditions, frequent motionblurring and variations in pose and amera position.A human annotator has manually annotated all verbs and their semanti roles inepisodes 1 to 9 of the �fth season, totaling 4340 frames with 12754 roles. Theseannotations have been heked for inonsistenies by a seond annotator.



124 AUTOMATIC ANNOTATION OF VIDEOmodel %P %R %F1generative 70.36 63.61 66.79disriminative 76.77 74.75 75.85Table 9.3: Results for semanti role detetion for visual verbs.
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   Agent      BuffyFigure 9.1: SRL result (middle olumn) for an example sene, showing thetransript (left olumn) and video frames (right olumn).9.1.4 EvaluationThe transripts were preproessed by removing all HTML formatting. We havealso removed all dialog, sine this ontains very little information on the ations ofthe haraters. The desriptive text was then split in sentenes that were part-of-speeh tagged (Mikheev, 1997) and parsed (Charniak, 1997). We reated featuresfrom these tags (see setion 4.3.1), trained our generative and disriminativesemanti role lassi�ers (see setion 4) on 8 episodes and tested on the remainingepisode. Table 9.3 shows that also here the disriminative model outperforms thegenerative model, on�rming our results in the previous hapters. We also showsome examples of automatially deteted semanti frames in �gure 9.1. We seehow they aurately desribe the ations in the video.We would like to emphasis again that the SLR systems and features applied hereare exatly the same as used on the PropBank dataset, showing that our approahis very �exible and an be applied rapidly on new datasets.9.1.5 Automati image annotationWe have desribed semanti role detetion in text for visual ations. Given a textdesribing an image or video, we an use the developed system to automatiallygenerate annotations that an be used in image analysis. Jie et al. (2009) have used



SCENE LOCATION ANNOTATION 125our system to suessfully detet the ators of ation verbs in texts desribing newsimages. From these automati annotations they learn assoiations between namesand visual fae desriptions and between ation verbs and visual pose estimates.The learned assoiations using the automatially deteted ators are appr. 75%orret for both name-fae and ation-pose assoiations, whih ompares favorablyto assoiations learned with manually annotated ators, resulting in appr. 80%auray for name-fae and appr. 83% auray for ation-pose assoiations.In the future we would like to use the annotations generated by this SRL lassi�erfor analyzing other ations, suh as emotions or movements.9.2 Sene loation annotationThe work desribed in this setion is joint work with Chris Engels, Jan Hendrik Beker,Tinne Tuytelaars, Marie-Franine Moens and Lu Van GoolIn this setion we onsider the problem of annotating senes in a video withinformation extrated from an assoiated text. We introdue this problem insetion 9.2.1 and desribe how we use a multimodal approah to sene segmentation(setion 9.2.2) and sene annotation (setion 9.2.3). We evaluate our approah insetion 9.2.4.9.2.1 IntrodutionWe onsider a video (e.g. a motion piture or soap series) that has an assoiatedtext (e.g. a transript) that desribes the ontent of the video. From this text, weaim to extrat the loation of a partiular sene in the video. These annotationsould be presented to an end-user, used for a textual searh in a video-arhive, oras a weak annotation for visual sene lassi�ers. An important di�ulty is thatthe number of loations is not known beforehand and that many loations willonly our in a single video. We thus need a method that is able to dynamiallydetermine the number of and textual desriptions for loations in a new video.We hereby rely on information extration methods that extrat the loationdesriptions from the assoiated texts. Furthermore we develop a method topropagate loation annotations from one sene to senes that are visually similar.In this work we use transripts for an ation series that is reated by fans (seesetion 9.2.4). These transripts ontain desriptive text together with the dialog.Figure 9.2 gives an overview of our approah. We begin by roughly aligning thetransript to the video using subtitles with approximate timing information. Wethen split the video into senes using a text lassi�er and shot ut detetor. Forevery sene we extrat the loation phrases and use these to train a latent Dirihlet
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Figure 9.2: Overview of our approahalloation topi model. The �nal annotations are then hosen as the phrase thatis most likely given the topi distribution, reweighted by visual similarity.9.2.2 Sene Segmentation and AlignmentWe de�ne a sene as a onseutive sequene of shots that are set in the sameloation. Senes are used as the basi units that are annotated in our work. Tosegment the video into senes we use a multimodal approah, ombining a shotut detetor with a text lassi�er.9.2.2.1 Coarse AlignmentWe �rst reate an approximate alignment of video and text. The transriptsused here do not ontain any timing information. To obtain approximate timinginformation, we align the dialog in the transript with the subtitles extratedfrom the video, using the time-warping approah desribed by Everingham et al.



SCENE LOCATION ANNOTATION 127(2006) (Sankar K. et al. (2009) used speeh reognition for the same purpose). Thetiming information from the subtitles an thus be transferred to the dialog in thetransripts, whih also gives an approximate timing of the desriptions, sine theseare interwoven. This timing is however only approximate, and beomes worse insenes with limited speeh. We further re�ne this alignment in setion 9.2.2.4.9.2.2.2 Learning sene uts in the textThe desriptive part of the transripts often ontains strong ues for the start ofnew senes, e.g. �Fade in on a beah, daytime.�. The dialog part does not ontainsthese lues, and we thus disard the spoken lines. We learn a sentene lassi�erthat lassi�es every sentene as desribing a transition from one sene to another(e.g. �Cut to the kithen�).We preproess the text by dividing the textual desriptions into sentenes, tokenizethe sentenes into words and perform part-of-speeh tagging (using the LTPOStagger (Mikheev, 1997)). We then extrat the following featuresUnigram Every word token in the sentene (e.g. �bu�y�).Bigram Every onseutive sequene of 2 tokens in the sentene (e.g. �bu�y_running�).Trigram Every onseutive sequene of 3 tokens in the sentene (e.g. �bu�y_running_through�).POS Part-of-speeh tags of all words in the sentene (e.g. �VB�, �NP�).POS+token Part-of-speeh tag onatenated with the word token (e.g. �NNP_bu�y�).Position The position of the sentene in the text, given by the harater pointer.This position is binned in 20 intervals of equal width.We perform experiments with a generative and disriminative lassi�er, and �ndthe optimal ombination of features for every lassi�er. We use the lassi�er toompute for every sentene w = {w1, . . . , wn} of n words w a probability Put(w)for the ourrene of a sene ut in this sentene.9.2.2.3 Deteting visual shot utsWe loalize our sene uts by deteting an assoiated shot ut in the video. Shotboundary detetion is fairly well-established, see e.g. Yuan et al. (2007) for aomprehensive review. Our implementation uses a sliding window over olorhistograms to ompute a dissimilarity energy Ecut based on χ2-distane, followedby loal non-maximum suppression and thresholding.



128 AUTOMATIC ANNOTATION OF VIDEO9.2.2.4 Re�ned sene utsAs mentioned before, the alignment for text desriptions may be impreise insenes with little dialog. To minimize this error, we need to re�ne the alignmentof sentenes near a sene ut boundary.We �rst quantify the error of our initial textual and visual uts relative to groundtruth using our training episodes. We assume the distribution of the timingerrors in both text and visual uts is Gaussian, and we learn the mean o�sets
µtext, µvid and standard deviations σtext, σvid of the text and video, respetively.To determine the exat frame of the sene ut, we de�ne energy terms for eahmodality. For a frame k, the text ut energy Etext is

Etext(k) = max
i

Pcut(wi)N (tk|(ti + µtext), σtext) (9.1)where P (wi) is the probability of a ut ourring at sentene wi and N (x|µ, σ) is aGaussian distribution evaluated at x. ti is the initial time estimate of sentene wi,whih is hosen as the end time of the subtitle ourring just before this sentene.Similarly, we de�ne the video ut energy Evid as
Evid(k) = max

i
Ecut(Ci)N (tk|(ti + µvid), σvid) (9.2)for a deteted ut Ci at time ti.Our �nal uts are found by performing loal non-maximum suppression andthresholding on the joint energy

ETV(k) = Etext(k)Evid(k) (9.3)Figure 9.3 shows an example of the energies evaluated over some frames, where ared X denotes a ground truth ut.9.2.3 Loation annotationFor every automatially deteted sene we want to generate a text phrase thatdesribes the loation of that sene. Here for we use a topi model that usesextrated loations from the text together with a visual similarity of the videosenes. We start by desribing the loation lassi�er.
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Figure 9.3: Example of ut energy over time. The blue line orresponds to Etext,green to Evid, and blak to ETV . A red X denotes a ground truth ut.9.2.3.1 Identifying loation phrasesWe want to determine for all phrases in the text, whether they desribe a loationor not. We manually annotate the loations in a number of transripts, and assigna label to all words: bLo, iLo, oLo for respetively the �rst word in a phrasedesribing a loation, other words in this phrase or words outside these phrases.We want to ompare a generative and a disriminative sequential lassi�er andtrain a hidden Markov model or maximum entropy Markov model (Ratnaparkhi,1996) on manually annotated episodes and use these to label unseen episodes. Forevery word we generate the following features:Token The word token (e.g. �bedroom�).POS Part-of-speeh tag of the word (e.g. �DT�).Sene ut probability The binned probability of the sene ut lassi�er for thatsentene.Possessive Boolean value indiating whether this word is in a possessive form(e.g. �Joye's�).Previous token The word token that ours just before this word.Next token The token that ours just after this word.Path to top The path from the root node of the parse tree to this word (e.g.root_dep_nmod_pmod).



130 AUTOMATIC ANNOTATION OF VIDEOHidden word A probabilisti feature representing the hidden word distributionas determined by the latent words language model.Although not listed here, the hidden Markov and maximum entropy Markovmodels also take into aount the label of the previous word. We use theselassi�ers to ompute a probability Ploc(w
i
i−n+1) for every phrase w

i
i−n+1.9.2.3.2 Latent Dirihlet alloationMany senes do not mention the loation expliitly, although the loation ouldbe inferred by the desription of other objets (e.g. �fridge� in the kithen).Furthermore, the textual desriptions of loations ontain signi�ant variation,posing various problems for learning loation labels for senes. Problems arisefrom synonyms and polysemes, where multiple phrases are used to refer to thesame loation (e.g. �emetery� and �graveyard�), or where di�erent loations arereferred to by the same phrase (e.g. �the living room� refers to the living room intwo di�erent houses).We use latent Dirihlet alloation (LDA, Blei et al. (2003)) to address theseproblems. LDA learns, from a orpus of douments, probabilisti topis thatapture soft lusters of words that our frequently together. It is a generativemodel of douments where the generative proess is summarized as follows: for adoument d a multinomial mixture parameter θ is �rst sampled. Then, for eahword w a topi z is sampled from the multinomial distribution and, the word w issampled from the multinomial word distribution onditioned on that topi. Theprobability of a olletion D of M douments is given by

P (D|α, β) =

M
∏

d=1

ˆ

P (θd|α)

(

Nd
∏

i=1

∑

zdi

P (zdi|θd)P (tdi|zdi, β)

)

dθdwhere θd is the topi distribution for a doument d, tdi is the term on position
i in doument d and zdi is the topi assigned to this term. LDA is trained onthis orpus by �nding the parameters α and β that maximize the likelihood ofthe model on the data. This model alleviates the aforementioned problems byassigning synonyms to the same topi and assigning polysemous words to multipletopis. Context words ontribute to topis as well and as suh an help to identifythe loation in ase of underspei�ation. In our work the douments orrespondto senes, and we set the terms of a sene to all the extrated phrases from thetext of that sene.To make sure that the learned topis re�et the di�erent loations and not othertopis in the text, we assign a weight v(wi

i−n+1) to every sequene of wordsw
i
i−n+1



SCENE LOCATION ANNOTATION 131of length n. These weights redue the in�uene of phrases that are not indiativeof loation and fore the topis to fous on loation information. The parameters
α and β are then hosen to optimize

P (D|α, β) =

M
∏

d=1

ˆ

P (θd|α)

(

Nd
∏

i=1

∑

zdi

P (zdi|θd)P (wi
i−n+1|zdi, β)v(wi

i−n+1)

)

dθdWe set the weight of a phrase to the probability of that phrase desribing a loation,i.e. v(wi
i−n+1) = Ploc(w

i
i−n+1), as given by the loation lassi�er desribed in theprevious setion.9.2.3.3 Visual similaritySome senes lak text that desribes the loation (nor desribes other informativeobjets), so their respetive topi distributions will not be useful in generating anannotation. In these ases, we an use visually similar senes to propagate ritialwords to the ambiguous senes.Given two senes, we need to ompute a measure for the visual similarity of thesene loations. In the foreground of a typial sene, there are often one or morepersons present. The bakground may be luttered, out of fous, sparsely detailed,and oluded by people. Additionally, the amera perspetive may be stationary,move smoothly, or frequently ut away, potentially ausing the bakground toappear ompletely di�erent from alternate viewpoints.Persons themselves are not indiative of a ertain loation, as they may appear indi�erent loations. Therefore, we use the upper-body pose detetor of Ferrari et al.(2008) to exise them from the senes as muh as possible, prior to omputing avisual sene desriptor for the sene similarity measure.Visual desription Several methods exist for the desription of the visualappearane of a general sene. Loal or GIST features (Oliva and Torralba, 2006)are not suitable for our purpose, as we need a desriptor that does not enode thesene in too muh detail, but is rather robust against e.g. bakgrounds being inor out of fous. Therefore we onvert the olors in the bakground of all videosto the CIELab olor spae (Wyszeki and Styles, 1982) and luster them in 32lusters using k-means lustering. Every frame is then desribed by the ratio ofits bakground olors in every luster.Next, we luster shots in eah sene into a small number of distint ameraperspetives, and store the mean histogram for eah luster along with the



132 AUTOMATIC ANNOTATION OF VIDEOorresponding number of images. We use the self-tuning spetral lustering methodproposed by Zelnik-Manor and Perona (2004), whih handles multiple sales oflusters and provides a onvenient way of seleting the optimal number of lusters.Visual distane of senes using EMD To estimate the distane between twosenes s and s′ from the set S of all senes we use a nested Earth Mover's Distane(EMD) approah (Rubner et al., 2000). EMD measures the distane betweentwo distributions of weighted lusters {(c1, ω1), (c2, ω2), . . . , (cn, ωn)} by solvinga �ow optimization problem using pairwise osts between lusters. There is norequirement for eah distribution to have the same number of lusters.In our work shots are represented by weighted olor lusters and senes arerepresented as weighted shot lusters. EMD is �rst used to ompute a pair-wisedistane between shots, and these distanes are used in a seond iteration of EMDto ompute a distane EMD(s, s′) between senes s and s′.Finally, we onvert these sene distanes into a similarity matrix:
A(s, s′) = exp

(

−
1

λ
EMD(s, s′)2

) (9.4)where λ is a saling parameter determined from the training data.9.2.3.4 Updating the topi distributionsFor senes that do not ontain enough words indiative of loation, the topidistributions obtained solely from the transript are inadequate, despite thereweighting. Therefore, inspired by the Mixture of Experts model (Jaobs et al.,1991), we model an updated topi distribution P̃ (zi|s) as a mixture of the originaltopi distributions:
P̃ (zi|s) =

∑

s′∈S

π(s, s′)P (zi|s) (9.5)The mixing oe�ients π(s, s′) are given by the normalized visual similarity A(s, s′)between senes s and s′:
π(s, s′) =

A(s, s′)
∑

s′∈S A(s, s′)
(9.6)This e�etively allows to propagate loation labels between visually similar senes.9.2.4 Experiments and evaluationWe evaluate our system on 4 episodes of Bu�y the Vampire Slayer, for whihtransripts are readily available on the Internet (Twiz TV). These episodes



SCENE LOCATION ANNOTATION 133ombination %P %R %F1best = bigram + W&P + position 91.71 79.48 85.16best + unigram 90.36 76.92 83.10best - bigram 88.41 74.35 80.77best + trigram 91.62 78.46 84.53best + POS 90.17 80.00 84.78best - W&P 88.70 80.51 84.40best - position 90.47 77.94 83.74Table 9.4: Auray of the disriminative sene ut lassi�er for di�erentombinations of features. + adds a feature, − removes a feature, POS is part-of-speeh tag, W&P is the onatenated word token and part-of-speeh tag andposition is the binned position of the sentene in the transript.provide a hallenging validation for our system sine the textual transripts areunstrutured and ontain a lot of variation, and the video has highly variablelighting onditions, frequent motion blurring and many di�erent loations. Weevaluate our system on episodes 1 to 4 of season 5. On average an episode hasappr. 53 senes in appr. 20 di�erent loations. Only a handful of these loationsare shared aross episodes.We evaluate the di�erent parts of our system: sene ut detetion (setion9.2.4.1), loation detetion (setion 9.2.4.2), and the automati annotations(setion 9.2.4.3).9.2.4.1 Sene ut evaluationWe �rst perform an evaluation of the generative and disriminative sene utlassi�ers. We have manually annotated the sene uts in the transripts of 4episodes and perform 4-fold ross validation, training the lassi�er on 3 episodesand testing on the remaining episode. For every lassi�er we �nd the optimalombination of features (table 9.4), whih was bigram+W&P+position for thedisriminative lassi�er and bigram+W&P for the generative lassi�er. Table 9.5shows that the performane of the generative lassi�er is lose to the performaneof the disriminative lassi�er. This di�ers from results in the previous hapters,where disriminative lassi�ers signi�antly outperformed generative lassi�ers forword sense disambiguation and semanti role labeling. Here however we fae a verysmall training set (3 episodes) on whih generative lassi�ers will often performquite well, sine they have a smaller variation then disriminative lassi�ers whentrained on a limited number of samples (Bouhard and Triggs, 2004).The lower reall of the sene ut detetors is mainly aused by inorret



134 AUTOMATIC ANNOTATION OF VIDEOlassi�er %P %R %F1disriminative 91.71 79.48 85.16generative 91.07 78.46 84.29Table 9.5: Performane of the disriminative and generative sene ut lassi�ersin terms of preision (P), reall (R) and F1-measure.
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RecallFigure 9.4: Preision-reall of �nal sene uts with �xed error margin of 12 frames.lassi�ation of sentenes that desribed the ators moving from one loation toanother, e.g. �Bu�y goes into another room...�, whih are also onsidered seneuts beause of the loation hange.To �nd the ombined sene uts in video and text, we ombine the probabilitiesgenerated by the text lassi�er with the deteted shot uts in the video asdesribed in setion 9.2.2.4. The resulting on�dene values give the preision-reall urve in �gure 9.4. Many of the missed sene uts are in areas with eitherfew text desriptions or dialog, leading to low ut probabilities or impreise uts,respetively. We selet a ut threshold with a high reall, sine the visual updatestep provides robustness to oversegmentation.9.2.4.2 Loation detetion evaluationIn this setion we evaluate loation detetion in text. As desribed in setion9.2.3.1 we perform experiments with two lassi�ers, a generative hidden Markovmodel and a disriminative maximum entropy Markov model. For both models weperform 4-fold ross validation on 4 manually annotated episodes. We �rst �nd theoptimal ombination of features (table 9.6), whih was token+ut_prob+previousword + next word+hidden word for the HMM and token + POS+ ut_prob +possessive + previous word + next word+hidden word for the MEMM. We see in



SCENE LOCATION ANNOTATION 135ombination %P %R %F1best=token + ut_prob + previous + next word 68.75 75.54 71.98best - token 50.90 36.05 42.21best + POS 56.92 79.39 66.30best - ut_prob 59.41 75.31 66.42best - previous word 56.53 78.48 65.72best - next word 61.53 57.87 59.64best + possessive form 70.66 73.07 71.84best - hidden word 69.72 70.05 69.88Table 9.6: Auray of the disriminative MEMM loation detetor for di�erentombinations of features. + stands for adding a features, − for removing, POSfor part-of-speeh tag and ut_prob for the binned sene ut probability of thesentene. lassi�er %P %R %F1HMM 68.75 75.54 71.98MEMM 81.31 61.92 70.30Table 9.7: Performane of the generative HMM and disriminative MEMMloation detetors in terms of preision (P), reall (R) and F1-measure.table 9.7 that the HMM outperforms the MEMM. This again shows that generativemodels an outperform disriminative models when trained on small training sets.The most ommon error by both lassi�ers is inorret segmentation, where onlypart of a loation is orretly labeled (e.g. labeling �the house� instead of �insidethe house�). This however typially results in labels that are still informative ofthe loation to the end-user.9.2.4.3 Loation annotation evaluationWe evaluate the orretness of the annotations generated by our system. We ouldevaluate the number of senes that have a orret annotation, but this woulddepend on the number of senes that are automatially deteted and would treatlong senes equal to short senes. Instead we transfer the annotation of a sene toevery frame in that sene and manually ount the number of frames in the videothat have been assigned a orret annotation.Table 9.8 shows the performane of our system on two episodes (episode 2 and3 from the 5th season). We see that for episode 2 the LDA topi model reduesthe errors by 9.4%. For this episode the visual reweighting did not help. A



136 AUTOMATIC ANNOTATION OF VIDEOepisode only text text + LDA text + LDA + vision2 54.72% 58.98% 57.39%3 60.11% 65.87% 68.67%Table 9.8: Performane of automatially generated annotation as judged by ahuman annotator, exluding opening and losing redits.
Transcript Cut back to Anya's.  Anya 

looks conflicted.

Text only anya's

Combined anya's apartment

Transcript Various shots of Buffy fighting 

and killing vampires

Text only various

Combined a graveyardFigure 9.5: Two senes with a seletion of their video frames, desription inthe transript and the automati annotations based on the text only or on theombined text and video.manual inspetion revealed that a number of inorret sene uts onfused thevisual similarity metri by merging a number of senes in one large segment.For episode 3 we see that also here the LDA topi model redues errors with
14.4%. For this episode the visual reweighting improves the automati annotation,resulting in a total error redution of 21.46%. We show some example senes in�gure 9.5. These senes illustrate that annotations are suessfully transferredfrom visually similar senes when they are laking in the textual desription.9.2.5 Related WorkLoations are of interest to and well-explored by several branhes within theomputer vision and robotis ommunities. Generi sene type lassi�ation, whihseeks to desribe the kind of loation seen in an image (e.g. beah or street) hasbeen studied e.g. in (Vogel and Shiele, 2007; Lazebnik et al., 2006; Vailaya et al.,2001; Blighe and O'Connor, 2008; Ni et al., 2008). Suh approahes mostly relyon supervised tehniques and large sets of annotated training data.Reently, some weakly supervised methods for automati video annotation havebeen proposed. Some of these methods fous on deteting similar loations, suhas Sha�alitzky and Zisserman (2003), who develop a model that retrieves imagesof a partiular loation based on wide baseline mathing tehniques, Vailayaet al. (2001) who lusters images in oarse ategories suh as ity/landsape,forest/mountain, Shro� et al. (2009) represent frames with texton histograms andluster these in a number of loations with single-link agglomorative lustering, and



SCENE LOCATION ANNOTATION 137Héritier et al. (2007) who use latent aspet models to identify disriminative andoften reourring parts of loations using SIFT features, whih are then labeledmanually. These methods only reate lusters of shots in the same loation anddo not attempt to assign a label or textual desription to these lusters.Other researhers fous on sene segmentation e.g. Zhai and Shah (2005) usea purely visual Markov hain Monte Carlo approah and Chen et al. (2008)use a time-onstrained lustering algorithm. These methods do not attempt tolassify the obtained senes in any way. Zhu and Liu (2009) study the problem ofsegmentation into senes, and lassify the obtained senes into either onversation,suspense, or ation senes, based on audio and video and using heuristi rules forthe atual lassi�ation. Neither of these works explores the use of fan sripts toobtain loation annotations automatially.Other authors have looked into the use of readily available textual annotation forTV and movie footage to learn to annotate in a weakly supervised manner aswell. In partiular, Cour et al. (2008) propose a uni�ed generative model thatintegrates sene segmentation, sript alignment, and shot threading. Everinghamet al. (2006) use fan sripts aligned to the video data based on the subtitles tothen identify the ast in a soap series. Laptev et al. exploit sripts for ationreognition in Hollywood movies, using a supervised text lassi�er (Laptev et al.,2008) and using a kernel-based disriminative lustering algorithm to overomeproblems with inaurate alignment between video and text (Duhenne et al.,2009). Finally Marszaªek et al. rank video segments based on ations, usingmining tehniques (Marszaªek et al., 2009). They also mine loation names, butusing sripts that are way more strutured than ours and not fousing on spei�loations but rather sene types.In our work, we use a purely textual topi model (i.e. LDA (Blei et al., 2003)).Other people have investigated the use of ross-modal topi models, ombiningvisual and textual information, e.g. (Blei and Jordan, 2003; Monay and Gattia-Perez, 2003; Li et al., 2009), in the ontext of automati image annotation.However, it turns out it is relatively di�ult to balane the ontributions of bothmodalities. Moreover, in our appliation, text and visual information are onlyweakly linked, with often omplementary information present in only one of thetwo modalities. Hene, we deided to use the visual information in a postproessingstep to the textual topi model, updating the textual topi distributions based onvisual similarity. This is, in some sense, similar to the tag propagation proposedby Guillaumin et al. (2009).



138 AUTOMATIC ANNOTATION OF VIDEO9.3 Conlusions of this hapterIn this hapter we have developed information extration methods that analyzetextual desriptions of a video. In the �rst setion we developed a SRL lassi�erfor visual verbs. We have shown that we an apply the model developed in earlierhapters to new frame and role de�nitions and to new datasets. This lassi�er wassuessfully used to learn assoiations between desriptions and images for personsand their pose.In the seond setion we developed a novel multimodal approah to weaklysupervised automati annotation of loations from video and text. We have �rstdesribed how sene uts are deteted by ombining a sene ut detetor in thetext with a shot ut detetor in the video. The ombination took into aountthe approximate alignment of the two media. We have then developed a novelmethod for the detetion of loations in the text and ombined this model withvisually reweighted LDA, whih allowed the propagation of loations to visuallysimilar senes. This system was tested on a hallenging ation series with manyinfrequent loations, where the transripts often do not desribe the loations. Theevaluation showed that in many ases we were able to detet a loation present inthe desriptions, and that if the text was laking a desription we ould propagatean annotation from a similar sene, where both LDA and the visual similarity hada positive ontribution, ignoring the ase where the visual similarity was onfusedby a inorret sene segmentation.In the future we would like to exploit a ombination of LDA and the latent wordslanguage model. Where LDA is very good at learning global topis for a text,and learning words that share the same general topis, the latent words languagemodel is very good in learning synonyms and similar words in a ertain spei�ontext. A ombination of these methods ould result in even more preise wordsimilarities, that take into aount both loal (the ontext) and global (the entiredoument) information. In this respet we mention the work by Gri�ths et al.(2005) who learns simultaneously syntati lasses and semanti LDA-style topis.However in this work the words belong to either a syntati lass or to a topi,while we are interested in a method that would ombine these in a joint model.
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Chapter 10Conlusions
Summary and ontributionsIn this thesis we performed researh on a number of topis related to informationextration from texts. Our main interest was the study of weakly supervisedmethods that use knowledge learned from unlabeled data to improve theperformane of supervised models. We �rst disussed this in a uni-modalsetting, where a set of labeled text is augmented with a large body of unlabeledtexts to improve the auray of information extration methods on texts, andthen disussed this in a multimodal setting, where information extrated fromdesriptive texts was used to improve the auray of image analysis methods.Our text started by outlining the ontext of our researh in hapter 1, whihwas expanded in hapter 2 with a number of examples of popular informationextration tasks and with an extensive introdution to direted Bayesian networks.In part I we applied today's standard methods for supervised informationextration to two tasks. Chapter 3 desribed a supervised method to word sensedisambiguation and hapter 4 desribed a supervised method to semanti rolelabeling. Both methods used well-studied features and models, and ahieved state-of-the-art results. These results where however not fully satisfying, espeiallytaking into aount the large amount of labour needed to reate the large manuallyannotated datasets used for training. We argued that these supervised modelssu�ered from ambiguity and underspei�ation harateristi to natural language.In part II we addressed these problems with uni-modal weakly supervised learning,where a set of annotated texts was augmented with a large body of unlabeled texts.In hapter 5 we proposed a novel model for semi-supervised learning for semanti140



CONCLUSIONS 141role labeling. We used hidden variables in the Bayesian models to represent thelabels of the unlabeled examples and estimated the values of these variables withGibbs sampling (for the generative model) or Metropolis-Hastings sampling (forthe disriminative model). We observed however how the performane of thesemodels deteriorated when using more unlabeled examples. We have then proposeda generative multiple-mixtures model where semanti roles were modeled witha number of mixture omponents that gave the model more expressive powerto model natural language. This model was more robust to large numbers ofunlabeled data, but did not outperform the supervised model.We turned to a di�erent approah in hapters 6 and 7. In hapter 6 weproposed the latent words language model. This model is a novel model ofnatural language that learns word similarities to redue the sparseness problemsassoiated with traditional n-gram models. Beause of the large number of hiddenvariables, traditional methods for training and inferene (i.e. the Baum-Welhalgorithm) are not tratable for this model. We have developed a new methodfor inferene, termed the forward-forward beam searh. This method was alsoused when training this model and when using it to predit the probability ofunseen texts. Experiments showed that this model outperformed both standard n-gram smoothing models and lass-based language models. The automati learnedword similarities in this model were used in hapter 7 we improve the modelsfor word sense disambiguation and semanti role labeling. We disussed variousmethods to inorporate this knowledge in the supervised models and found that anapproah where the hidden words were used as probabilisti features resulted in animprovement over supervised models without these features. These improvementswere largest with small training sets, showing that this method redues thedependeny of the supervised models on large annotated datasets. This methodhad the additional advantage that it an be easily inorporated in other supervisedinformation extration and natural language proessing methods.In part III we turned to the problem of multimodal weakly supervised learning.In this part we disussed various methods to analyze text desribing the ontentof an image or video. We started in hapter 8 by desribing the appearane model.This model ombined the saliene and the visualness measure to selet with highauray the entities from the text that are likely to our in the image. Toompute the saliene (i.e. the importane of an entity in the text) we ombinedan analysis of the disourse of the entire text with a syntati analysis of theindividual sentenes. The visualness measure (i.e. the extent to whih an theentity an be pereived visually) was omputed with a novel method that uses theWordNet hierarhy together with a number of visual and non-visual seed synsets.We used this model in two appliations, to align names in the text with faes inthe image and to perform a textual image searh. This model was also extendedto inlude visual attributes, where the visualness of these attributes was learnedfrom a orpus with image desriptions.



142 CONCLUSIONSChapter 9 disussed the automati annotation of videos. We onsidered two typesof annotations, visual semanti roles and sene loations. For the visual semantiroles we applied our existing semanti role labeling system to a new dataset and anew set of roles, showing that the system an straightforwardly be applied to thesenew settings. To annotate senes in a video with their loations, we developed anovel method that ombined information in the text with information in the video.This method onsisted of a sene ut detetor that ombined a text lassi�er witha shot ut detetor, and of a loation detetor based on a hidden Markov model.To propagate the disovered loations to visually and textually similar senes weproposed a topi model where the topis where reweighted with visual similarity.Throughout our work we proposed and evaluated di�erent types of features forevery information extration task. We also onsistently ompared generativeand disriminative models. This showed that disriminative models outperformgenerative models when large sets of training are available (e.g. word sensedisambiguation, semanti role labeling), but that generative models an havesurprisingly high performane on small training sets, outperforming disriminativemodels (e.g. sene ut lassi�ation, loation detetion).To summarize, we list all novel models and methods that have been developed inthis thesis:
• A semi-supervised model for semanti role labeling.
• A semi-supervised multiple-mixtures model for semanti role labeling.
• The relative disounted Kneser-Ney smoothing method.
• The latent words language model (LWLM).
• A method that uses the LWLM for weakly supervised word sense disambigua-tion.
• A method that uses the LWLM for weakly supervised semanti role labeling.
• A method to predit the entities present in an image based on an analysisof the desriptive text, omprising� A method to ompute the saliene of entities in a text.� A method to ompute the visualness of entities from the WordNetditionary.
• A method for the deteting and labeling arguments of visual verbs for theannotation of ations in videos.
• A method for the automati annotation of loations of senes in a video,omprising



CONCLUSIONS 143� A multimodal sene ut detetor for videos.� A method for the automati detetion of loation phrases in the text.� A multimodal method to propagate loation phrases to similar senes.These models were all tested on annotated data (models for lassi�ation orannotation) or unseen texts (language models) and ompared to state-of-the-artmodels where available.Lessons learnedWe started our work with the observation that the limited performane ofsupervised models for many information extration tasks is due to the largevariation and ambiguity of natural language. We then set o� with the aimof �nding a method that would leverage the information present in unlabeledexamples. However simple to oneive intuitively, this task was more di�ultthan initially antiipated. A method for semi-supervised learning with hiddenvariables was found not to be suited for this task. A seond method based on anadvaned language model, was more suessful. We reported signi�ant gains inperformane when training the models on a limited training set. On larger trainingsets however only limited gains were ahieved. At this moment it is unlear whethera further improvement requires improving the language model or the method usedto inorporate results of the language model in an information extration method.The outstanding performane of the language model on prediting unseen textsseem to point to the latter.We are onvined that our researh has pointed to some interesting diretions forfuture researh, although we are probably still only srathing the surfae of the fullpotential of weakly supervised models. Researh on this topi will likely ontinuefor some years to ome, sine also after two deades no lear single best methodhas been disovered that results in signi�ant gains on a number of informationextration tasks.From our researh on weakly supervised multimodal methods we learned that agood method for information extration is indispensable when trying to ombinethe two media, and that it is possible to extrat detailed annotations of images andvideo from desriptive texts using appropriate information extration methods.Future workOur diretions of future work an be divided among a number of topis. Firstwe would like to investigate two extensions to the latent words language model:



144 CONCLUSIONS(1) learn similarities between phrases instead of between words, sine the meaningof multi-word expressions (e.g. �United Nations�, �touh down�) an often notbe determined from the meaning of the individual words. This would involve adynami method to split a sequene of words into individual phrases. This ouldbe performed with the inside-outside algorithm (Lari and Young, 1990), althoughit will also have to be adapted for the large number of hidden variables. This ouldbe performed with tehniques similar to the ones we used to adapt the forward-bakward algorithm for hidden Markov models. (2) We would like to extend theLWLM to take into aount all words in the ontext, and not only the words ina window of length n. This would improve the synonyms learned for a word in aertain ontext sine the general topi or domain of a text in�uenes the relevantsynonyms. In this ontext we would like to investigate a ombination of the LWLMwith latent Dirihlet alloation [Blei et al., 2003℄, sine this model has proven itsadequay for modeling doument level topis.As desribed above we do not belief that the full potential of weakly supervisedmodels has been reahed. More spei�ally we think that more researh onmethods to use the latent words language model for supervised informationextration still has a large potential. Ideally these method would be su�ientlygeneral to also be appliable to other language models, sine intuitively anyknowledge of the struture of language should be useful for an automati analysisof this language.In our seond area of researh, multimodal image annotation using desriptivetexts, many advanes are still possible. We would like to extend the appearanemodel with a method that aptures ues in the text (e.g. �George Bush (third fromleft)�) to further strengthen the predition of entities likely to be seen in the image.Ideally these ues would be learned automatially without relying on an annotatedorpus to be independent of a ertain orpus or domain. We would also like toombine the appearane model with the semanti role labeling system used forvisual verbs. For example to identify objets as arguments to these verbs one aninorporate the visualness measure, sine this already gives a strong indiation ofobjets that are likely to appear in the video. We already outlined one suessfulappliation of the deteted ations on news images, but would like to extend thisin the future to a larger number of ations in real life video. Finally we think thatthe desribed method for automati annotation of loations in senes desribes aninteresting framework that an be adapted to other types of annotations, suh asfor example to the annotation of stories in news broadasts. A di�erent type ofannotation would only require to retrain the loation detetor on a new annotations(e.g. to extrat headlines of news stories) and would possibly require di�erent typesof features extrated from the video, depending of the entities of interest.
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Appendix ADistributed omputingarhitetureWe have developed a distributed omputing infrastruture in Java to perform atask in parallel on many omputers. This infrastruture is robust, very easy to set-up and downloads automatially exeutable �les and datasets and results resultsand exeptions to the ommanding lient. Furthermore it has been implementedfor performane, with data ahing, load balaning and automatially seletion ofthe fastest omputing lients. It has also been designed with the expliit goal ofbeing easy to use in Java programs.A.1 UsageWe have opted for the following design: a ommanding lient sends a numberof jobs to the job server. The job server sends these jobs to one or multipleomputing lients that exeute every job in parallel. After every job has beenexeuted, the results are send bak to the job server who sends them in turn sendsto the ommanding lient. We will desribe the usage of our framework a bit morein detailRemote jobThe basi unit of work is the remote job. To reate a new type of jobs, theuser reates a sublass of the lass RemoteJob and implements the abstratmethod void exeute(ComputingClient omputingClient). In design terms166



EXECUTION OF A JOB 167this method would be alled a hot-spot of our framework. Implementing thismethod, and making sure that the job and the data used by the job are serializable(to be send over the network), is the only work that need to be performed by auser of this framework. All other aspets are handled automatially.Commanding lientThe lass that is used by the user to send and reeive jobs, is the lassCommandingClient. First a new objet of this lass is reated using the onstrutorwith the ip-address, or the dns names of the job server. Then a number ofjobs are sent to the server with the method int sendJobToServer(RemoteJob).The user then waits for the results of these jobs with the methods JobWrapperwaitForJob(int jobId) or JobWrapper waitForAnyJob(). These methods willblok until either the job with the given id is reeived, or any job is reeived. Bothmethods return a JobWrapper objet that ontains the job, any data generated bythe job, and exeptions thrown by the job, if any. The lass CommandingClient isthe only lass of the framework that is used by an end-user.A.2 Exeution of a jobOne the user has passed a job to the method int sendJobToServer(RemoteJob)of the lass CommandingClient, the job is handled by the framework in a way thatis ompletely hidden from the end-user. In this setion we will see this proessin a bit more detail. First the lass int sendJobToServer(RemoteJob) serializesthe job, i.e. it onverts the job and any data it referenes to in a sequene ofbytes. For this is uses the standard ObjetOutputStream lass in the Java API.This sequene of bytes is then ompressed with the standard ZipOutputStreamlass. One the job (and any data it referenes) is ompressed, it is send to thejob server. The job server will try to �nd a omputing lient that is not exeutinga job. If multiple omputing lients are available, it will send the job to thelient with lowest average exeution time per job. Although not exat, sine thetime taken by di�erent jobs di�ers, in reality usually many similar jobs are sendto the server, and this heuristi is usually able to selet the fastest omputinglient available. If all omputing lients are oupied it stores the job until aomputing lient beomes available. One the job arrives at a omputing lient,it is unpaked (using ZipInputStream and ObjetInputStream), and its voidexeute(ComputingClient omputingClient)method is exeuted. The job willnow perform the tasks implemented by the user, until this method �nishes. Thejob is then again serialized and ompressed, together with data that was generatedduring the exeution (if any). The omputing lient then passes the job to the jobserver who passes it to the ommanding lient. The end-user will then reeive the



168 DISTRIBUTED COMPUTING ARCHITECTUREjob through either the JobWrapper waitForJob(int jobId) or the JobWrapperwaitForAnyJob() method.A.3 Automati lass loadingWhen a remote job is exeuted on the omputing lient, it will be most likelymake use of lasses other than the remote job (e.g. datastrutures to hold results,methods designed for omplex mathematial operations, ...). If these lasses arenot within the standard Java API, the virtual mahine on the omputing lient willnot know them. A possible solution would be to fore the end-user to ollet all theneessary lass �les in a library (e.g. a jar �le) that is stored on every omputinglient. This solution would require the end-user to make a list of all lass-�lesemployed (whih is a non-trivial task for all but the most simple programs), toollet them and to store them in a library.We have hosen for a more user-friendly and �exible solution. In Java, when anobjet of a ertain lass is reated, the virtual mahine loads the lass de�nitionthrough a lass loader. The standard lass loader in Java is designed to look forlasses in the lass path on the �le system. In our arhiteture we use a new lassloader on the omputing lient. This loader is implemented as a sublass of thestandard lass loader, and it implements an extra method whih heks whetherthe needed lass �les are present in the lass path. If they are not found, it sends amessage to the job server asking for this lass. The job server passes this messageto the orret ommanding lient, whih loates the lass de�nition on its lasspath, serializes it, and sends it to the job server who passes it on to the omputinglient. The omputing lient deserializes the lass de�nition and adds it to thelasses know by the virtual mahine.A.4 RobustnessWe wanted to make sure that the distributed system is robust against omputerfailures. We have implemented a simple sheme that protets the systems againsfailures of omputing lients. When the job server sends a job to a omputinglient, it remembers the job that was send to this lient. If for some reason theonnetion with the omputing lient is lost (e.g. due to a network failure), the jobis passed to a di�erent omputing lient. Another risk is when a omputing lientis overloaded and takes a very long time to �nish a job, although otherwise reatingnormally. As a preaution to this ase we send a job to di�erent omputing lients(max 3), if other omputing lients are idle and no other jobs need to be exeuted.From the moment one of the omputing lients returns the exeuted job, the jobson the other lients are terminated.



SECURITY 169A.5 SeurityBeause the desribed arhiteture allows for the exeuting of arbitrary Java odeon the omputing lients, seurity is a serious onern. We have implemented asimple but e�etive seurity protool based on a SSL onnetion with a privateand publi key pair. The job server holds the private part of the key. Both theomputing and ommanding lients have a opy of publi part of the key. When alient onnets to the server the publi key is heked against the private part andif mathed, the onnetion is established. If the publi key does not math, or nopubli key is o�ered, the onnetion is immediately terminated. One a onnetionis made, all data send on this onnetion is SSL-enrypted, thus o�ering a reliableprotetion against sni�ng or a man-in-the-middle attak. As a further seuritymeasure the IP addresses of the ommanding lients are logged, together withthe number of exeuted jobs and the omputing lients on whih these jobs wereexeuted.An important weakness in this design is the distribution of the publi key: everyomputer exeuting a omputing or ommanding lient needs a opy of this key. Ifone of this lients however is ompromised, and a maliious party obtains a opyof the publi key, he gains full aess to the system and thus to all omputinglients.A.6 Future workWe have build this distributed system mainly with the goal of being able to run thelatent words language model in parallel on a large number of omputers. Althoughwe have also used the framework for several other distributed tasks, it has neverbeen tested by users outside our researh group. Questions that are not fullyanswered at this moment are: how many ommanding lients an be the job serverhandle before beoming a bottlenek? How well an it ope with jobs that needlarge amounts of data? How seure is it against a targeted attak? How well doesthe system perform on di�erent omputer arhitetures (e.g. luster omputers,multiple proessors, shared memory arhitetures, ...)?. We think that the mostimportant weakness in the design at this moment is the hanlding of jobs of di�erentommanding lients. If di�erent ommanding lients exeute large amounts of jobs,the jobs are send to the omputing lients on a �rst-ome, �rst-serve basis. Thishowever does not take into aount the expeted exeution time of a job, or theamount of jobs that are already being exeuted for a partiular ommanding lient.We plan to address this problem in future work.



Appendix BIterative line searhFor the latent words language model we have a olletion of v smoothingparameters γ = [γ1, ..., γv] with lower bounds l = [l1, ..., lv] and upper bounds
u = [u1, ..., uv]. We would like to selet values for these parameters suh thatthe model assigns maximal probability to a olletion of unseen texts. In thissetion we develop a simple algorithm that �nds the values for some parameters
γ = [γ1, ..., γv] so that they represent a (possibly loal) maximum for someobjetive funtion f(.). Note that this algorithm is general in the sene thatit an be used to optimize any objetive funtion f(.) and not only the probabilityof unseen text aording to a language model.The algorithm is shown in listing 4. This algorithm iterates over all the parametersas long as an improvement was made in the previous iteration (stored in variable
G). In every iteration we test for every parameter γi whether an improvement anbe made by inreasing or dereasing this parameter with ǫ, taking into aount thelower and upper bounds. If an improvement an be made, the parameter is set tothis new value. We then try the next parameter and so on. Sine we improve theobjetive funtion f(.) in every step we are guaranteed to �nd a (loal) maximum.Although this algorithm is very simple, we found that the number of steps neededto �nd the optimal smoothing parameters for the latent words language modelwas su�iently low (usually around 5 iterations over all the variables), given aproper value for ǫ was hosen. Of ourse more omplex optimization methods (e.g.quasi-Newton methods), would most likely onverge even faster.
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ITERATIVE LINE SEARCH 171
Algorithm 4 .Require: γ = [γ1, ..., γv], l = [l1, ..., lv], u = [u1, ..., uv] and f(.)1: G ⇐ true2: max ⇐ f(γ)3: while G do4: G ⇐ false5: for i = 1 to v do6: γi ⇐ γi − ǫ7: if γi > li then8: vall = f(γ)9: else10: vall = −∞11: end if12: γi ⇐ γi + 2ǫ13: if γi < ui then14: valr = f(γ)15: else16: valr = −∞17: end if18: if vall > valr AND vall > max then19: γi ⇐ γi − 2ǫ20: max ⇐ vall21: G ⇐ true22: else if valr > vall AND valr > max then23: max ⇐ valr24: G ⇐ true25: else26: γi ⇐ γi − ǫ27: end if28: end for29: end while



Appendix CComputation of expetedvalue of sequenes of hiddenwordsIn setion 6.2.2 we have explained how we ompute the expeted value of a hiddenword at a partiular position as
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COMPUTATION OF EXPECTED VALUE OF SEQUENCES OF HIDDEN WORDS 173We an interpret γ(hi
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i−n+1) if iThe sum in this equation has time omplexity O(b|V |) and sorting the values hasomplexity O(b|V | log(b|V |)). Doing so for every position in the sequene resultsin a time omplexity of O(Nu × [b|V | log(b|V |)]). The �nal probability is thenomputed as
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P (wtrain|Cτ )Sine we need to ompute this probability for every position in the sequene, thetotal time omplexity is O(Nu × (1 + δ)× (b|V |+ b|V | log(b|V |)). We see how thistime omplexity is equivalent with the time omplexity to ompute the expetedvalue for the individual hidden words. In fat, the entire algorithm is almostequivalent.


