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Abstract

Information extraction (IE) methods detect and classify structured information in
unstructured data sources, such as texts and images. Currently, most automatic
IE methods are developed with supervised machine learning algorithms that are
trained on large, manually annotated datasets. The ability of machine learning
algorithms to combine complimentary and contradicting evidence has proved
successfully in a wide range of IE tasks. This approach however also suffers from
two important disadvantages. The first and most important disadvantage is that
for every new task, or for every new domain, a new training corpus needs to be
manually annotated. This manual annotation can require the annotation of several
thousands of sentences or images, which seriously increases the cost of developing
novel IE methods. A second disadvantage is that for complex IE tasks, even a
large training set will contain only a fraction of all the relevant structures in the
data, which can seriously limit the accuracy of these methods.

In this thesis we study weakly supervised learning, where we develop IE methods
that use only a small set of annotated examples, together with a large set of
unannotated examples to achieve a high accuracy. We study two settings: (1)
unimodal weakly supervised learning, where annotated texts are augmented with
a large corpus of unlabeled texts and (2) multimodal weakly supervised learning,
where images or videos are augmented with texts that describe the content of these
images or videos.

In the unimodal setting we study two IE tasks that extract information from texts.
The first task, word sense disambiguation (WSD) determines for every word in
the text the meaning of that word, depending on the context. The second task,
semantic role labeling (SRL), determines for every verb in the text the semantic
frame expressed by that verb and the words in the sentence that are prominent
arguments of this verb. The most important core of our models is a directed
Bayesian network.

We consider two families of weakly supervised methods to extend the supervised
models. The first family of methods are semi-supervised methods, where we learn
the parameters of Bayesian network by employing both labeled and unlabeled
data. For this we use directed Bayesian networks, where the structures of the
unlabeled examples are represented with hidden variables. The values of these
hidden variables are then iteratively estimated by optimizing the predictive quality
of the Bayesian network on the unlabeled examples. We show that this method is
not suitable for IE on texts because of the violation of the assumptions made
by this approach. We then turn to a different family of weakly supervised
methods, where we first learn an unsupervised model on the unlabeled examples,
and use the statistics learned by this model in a supervised machine learning
algorithm. We develop an unsupervised model, the latent words language model



(LWLM), that learns accurate word similarities from a large corpus of unlabeled
texts. We show that this model is a good model of natural language, offering
better predictive quality of unseen texts than previously proposed state-of-the-art
language models. In addition, the learned word similarities can be used successfully
to automatically expand words in the annotated training with synonyms, where
the correct synonyms are chosen depending on the context. We show that this
approach improves both the WSD and SRL classifier. Furthermore the LWLM
can be used in a wide range of IE and natural language processing applications.

The second part of this thesis discusses weakly supervised learning in a multimodal
setting. We develop IE methods to extract certain types of information from texts
that describe an image or video, and use this extracted information as a weak
annotation of the image or video. We start by developing a method to predict
which entities are present in an image. For this we develop two novel measures.
The salience measure captures the importance of an entity, depending on the
position of that entity in the discourse and in the sentence. The visualness measure
captures the probability that an entity can be perceived visually. This information
is extracted in a novel way from the existing WordNet database. We show that
combining these measures results in an accurate prediction of the entities present
in the image. We then discuss how this model can be used to learn a mapping
from names in the text to faces in the image, and to retrieve images of a certain
entity.

We then turn to the automatic annotation of video. We develop an SRL system
that annotates a video with the visual verbs and their visual arguments, i.e. actions
and arguments that can be observed in the video. The annotations of this system
are successfully used to train a classifier that detects and classifies actions in the
video. A second system annotates every scene in the video with the location of
that scene. This system comprises a multimodal scene cut classifier that combines
information from the text and the video, an IE algorithm that extracts possible
locations from the text and a novel way to propagate location labels from one scene
to another, depending the similarity of the scenes in the textual and visual domain.

All the work performed in this thesis is formally evaluated, by comparing the
automatic outputs to the ground truth outputs (in the case of IE classifiers), or,
by measuring the perplexity of the model on an unseen test text (in the case of
the language models). For several tasks we outperform (e.g. WSD and LWLM) or
match (e.g. SRL) the best state-of-the-art models. For other tasks we are the first
to formally evaluate our system on these tasks (e.g. annotation of visual entities
and annotation of locations), setting a competitive baseline for further research.



Kort overzicht

Informatie extractie (IE) methoden detecteren en classificeren gestructureerde
informatie in ongestructureerde bronnen, zoals teksten of afbeeldingen. Momenteel
maken de meeste automatische IE methoden gebruik van machine leer algoritmes
die worden getraind op grote, manueel geannoteerde datasets. De bekwaamheid
van machine leer algoritmes om aanvullende of tegengestelde informatie te
combineren is succesvol gebleken voor een grote verzameling van IE taken. Deze
aanpak heeft echter ook twee grote nadelen. Het eerste en meest belangrijke nadeel
is dat voor elke nieuwe taak een nieuw trainingcorpus moet worden geannoteerd.
Deze manuele annotatie omvat mogelijk duizenden zinnen of aftbeeldingen, wat de
kost van de ontwikkeling van IE methodes sterk doet rijzen. Een tweede nadeel
is dat voor complexe IE taken, zelfs een grote dataset maar een fractie van alle
structuren zal bevatten die herkend moeten worden. Dit kan de nauwkeurigheid
van de IE methodes negatief beinvloeden.

In deze verhandeling bestuderen we zwak gesuperviseerd leren, waarbij accurate
IE methodes getraind worden op een kleine verzameling geannoteerde voorbeelden
en een grote verzameling niet geannoteerde voorbeelden. We bestuderen twee
gevallen: (1) unimodaal zwak gesuperviseerd leren, waar geannoteerde teksten
worden aangevuld met een grote verzameling niet geannoteerde teksten (2)
multimodaal zwak gesuperviseerd leren, waar afbeeldingen of video’s worden
aangevuld met teksten die hun inhoud beschrijven.

Voor het unimodale geval bestuderen we twee IE taken die informatie uit
teksten extraheren. De eerste taak is de disambiguatie van ambigue woorden
afhankelijk van de context waarin die woorden voorkomen. De tweede taak
is het bepalen van het semantische frame voor elk werkwoord, samen met
de belangrijkste semantische rollen voor dat werkwoord. De IE algoritmen
voor deze twee taken worden ontwikkeld met behulp van gerichte Bayesiaanse
netwerken. We beschouwen twee categorieén van zwak gesuperviseerde methoden.
De eerste categorie zijn semi-gesuperviseerde methoden die de parameters van de
Bayesiaanse netwerken leren aan de hand van geannoteerde en niet geannoteerde
voorbeelden. In deze netwerken worden de labels van niet geannoteerde
voorbeelden voorgesteld met verborgen variabelen. De waardes van deze variabelen
worden iteratief geschat door de voorspellende kwaliteit van het netwerk op de niet
geannoteerde voorbeelden te optimaliseren. We tonen aan dat deze categorie van
methodes niet geschikt is voor IE uit tekst, omdat de veronderstellingen die deze
methoden maken niet gelden. Hierna richten we ons op een tweede categorie van
zwak gesuperviseerde methoden, waar eerst een ongesuperviseerd model geleerd
wordt met niet geannoteerde voorbeelden, en waar dan de statistieken geleerd
door dit model gebruikt worden in een gesuperviseerd machine leer algoritme. We
ontwikkelen een nieuw ongesuperviseerd taalmodel, het latente woord taalmodel
(LWTM), dat de gelijkenis tussen woorden leert aan de hand van een verzameling



niet geannoteerde teksten. We tonen aan dat dit model met een hoge accuraatheid
niet eerder geziene teksten kan voorspellen. De geleerde gelijkenissen kunnen
gebruikt worden om woorden te expanderen met hun synoniemen, welk zowel het
systeem voor disambiguatie als het systeem voor het ontdekken van semantische
rollen verbetert. Bovendien is de gebruikte methode algemeen en kan ze gebruikt
worden in een grote verzameling andere IE methoden.

Het tweede deel van deze thesis behandelt zwak gesuperviseerd leren voor
multimodale datasets. We ontwikkelen IE methoden om bepaalde types van
informatie te extraheren uit teksten die de inhoud van afbeeldingen of video’s
beschrijven. De geéxtraheerde informatie wordt dan gebruikt als een zwakke
annotatie van de afbeelding of video. We beginnen met het ontwikkelen van
een methode die voorspelt welke entiteiten in een afbeelding aanwezig zijn aan
de hand van de tekst die de afbeelding beschrijft. We ontwikkelen hiervoor twee
nieuwe heuristieken. De salience heuristiek modelleert de belangrijkheid van een
entiteit in de tekst, aan de hand van de positie van die entiteit in de gehele tekst
en in de zin. De visualness heuristiek modelleert de kans dat een entiteit visueel
kan worden waargenomen, welke op een nieuwe manier wordt bekomen uit de
WordNet database. Deze heuristieken resulteren gecombineerd in een nauwkeurige
voorspelling van de aanwezige entiteiten in de afbeelding. We tonen ook hoe dit
model gebruikt kan worden om de correspondentie te leren tussen namen in de
tekst en gezichten in de afbeelding, en om te zoeken naar afbeeldingen met een
bepaalde entiteit.

We breiden deze aanpak uit naar de annotatie van video’s. We ontwikkelen
een systeem voor het detecteren van visuele semantische rollen van visuele
werkwoorden, i.e. acties en argument die geobserveerd kunnen worden in de video.
De automatisch ontdekte acties en argumenten worden hierna gebruikt om een
systeem te trainen dat deze actie en argument automatisch ontdekt in een video.
Een tweede uitbreiding is de automatische annotatie van locaties van scenes in
de video. Dit systeem combineert informatie uit de tekst en de video om de
video onder te verdelen in scenes, en een IE algoritme om locaties uit de tekst te
extraheren. We ontwikkelen ook een nieuwe manier om locatie labels te propageren
van één scene naar een andere, afhankelijk van de similariteit van de scenes in het
tekstuele en visuele domein.

Al de ontwikkelde systemen in deze verhandeling werden formeel geévalueerd, door
ofwel de automatische uitvoer te vergelijken met de manuele annotatie (voor IE
methodes), of door de waarschijnlijkheid van een nieuwe tekst volgens het model
te meten (voor de taalmodellen). Voor verschillende taken behalen we betere
(e.g. woord disambiguatie en latent woord taalmodel) of gelijklopende resultaten
(e.g. semantische rol labelen) dan de beste state-of-the-art systemen. Voor andere
taken zijn we de eersten die deze resultaten voor deze taken formeel evalueren (e.g.
annotatie van visuele entiteiten en annotatie van locaties) en zetten we hiermee
een competitieve standaard voor toekomstig onderzoek.
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Formal notation

Recurring mathematical symbols used throughout the text:

BN = (Nodes, Arcs) Bayesian network consisting of collection of nodes Nodes
and a collection of arcs Arcs

Nodes nodes in a Bayesian network
Arcs arcs in a Bayesian network

Node; node i

Dom; domain of node 4

Func; probability mass function of node 4
Val; value of node 17

Wirain training text

N length training text

Wiest test text

N, length test text

Wheldout ~ heldout text

Ny, length heldout text

Dy annotated text

Dy text that has not been annotated

K number of features

w; word at position ¢

Ftr; all features of word at position 4

Ftrj; features for word 7 given verb at position j
Ftrk k-th feature of word at position 4

Ftrfi k-th feature for word i given verb at position j
L; label of word at position 4

0 generic symbol for parameters of a model



viii

Osemi parameters of a model learned with semi-supervised learning
04 parameters of a model learned with supervised learning
L(D4;0) likelihood of annotated data given parameters

Synset;  synset for word on position i.

Pred; predicate of word at position j
Tji role for word ¢ relative to the verb at position j
r; all roles for the verb at position j

Lj = (Pred;,r;) labeling for predicate j , i.e. the label Pred; of the predicate
and the labels r; of all roles

Wi, D-gram (Wi, ..., W
h; hidden word at position ¢
c(w%_m_l) counts of the n-gram W%_n_i_l in the training corpus

d(c(w!_, . ))discount factor for counts c(w'_, ;)

(o9

(wi=l)  dynamic interpolation factor

m(w;—1w;) the number of context the bigram w;_jw; occurs in

Q

collection of all counts from all n-gram in the training corpus
~ collection of all smoothing parameters

(hi_,,,) forward values for n-gram h!_,
B(hi_,.,) backward values for n-gram h!_

(hi_, ., h;) forward values for n-gram h!_,  , and hidden value h;

\%4 vocabulary



Abbreviations

Recurring abbreviations used throughout the text, in alphabetical order:

ADKN
BN
HMM
P
LDA
LWLM
ME
MEMM
NB
pmf
POS
RDKN
SRL
WSD

absolute discounted Kneser-Ney smoothing
Bayesian network

hidden Markov model

interpolated smoothing

latent Dirichlet allocation

latent words language model

maximum entropy

maximum entropy Markov model

naive Bayes

probability mass function

part-of-speech tag

relative discounted Kneser-Ney smoothing
semantic role labeling

word sense disambiguation
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Chapter 1

Outline

“Nothing clears up a case so much as stating it to another person.”
The Memoirs of Sherlock Holmes (1893)

In this chapter we introduce the main topics of this thesis. We first discuss the field
of natural language processing (section 1.1) and the field of information extraction
(section 1.2). In section 1.3 we will see how information extraction algorithms
today are mostly developed with machine learning methods. This approach has
however some disadvantages that can be solved with weakly supervised learning.
Finally we outline the structure of this thesis in section 1.4.

1.1 Natural language processing

This thesis is situated in the field of natural language processing (NLP), which we
define as

Definition 1.1 Natural language processing
The automatic analysis, transformation and generation of natural language texts

using computer algorithms.

As we will see in the following chapters we will mainly be interested in the analysis
of natural language. To put this in a larger context, we are actually interested
in using an automatic analysis of natural language to solve a specific information
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need of a specific end-user. Natural language processing is only a small part of
the full process of solving an information need. An idealized description of such a
process is:

1. An end-user has a specific information need that can possibly be satisfied
by the use of automated natural language processing from natural language
texts.

2. A person familiar with NLP analyzes this information need and specifies a
formal task definition and a description of the task corpus.

3. A NLP expert designs and implements a computer algorithm to carry out,
up to a certain accuracy, the defined task on the given corpus.

4. The computer algorithm is run on the entire task corpus, producing
automatic outputs for all texts.

Although this description is very general, it helps to outline the topic of this thesis.
We perform a study of step 3: the design of computer algorithms for the automatic
analysis of natural language text. We thus generally assume that the task definition
and corpus are known beforehand. Only on a small number of occasions we will
address the other steps involved in this process.

1.2 Information extraction

Natural language processing is a broad discipline that comprises many different
tasks. We will only be interested in one of these sub-tasks, information extraction
(IE). Although this term is commonly used to refer to a number of related tasks,
it does not have a commonly agreed definition. In this thesis we use the following
definition:

Definition 1.2 Information extraction

The extraction of a predefined structure in natural language using computer
algorithms, where elements in the structure have a mapping to individual words or
phrases in the text.

The elements that distinguish information extraction from the more general
natural language processing are predefined structure and mapping to individual
words or phrases. A different view on information extraction states that a
predefined structure with a number of slots is given, and that the goal of an
IE method is to find the positions where this structure is present in the text and
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to find the elements, such as words, phrases or sentences that fill one or more of
the slots.

In this thesis we perform experiments with a number of different information
extraction tasks. Two methods, word sense disambiguation (chapter 3) and
semantic role labeling (chapter 4), are used frequently throughout this thesis and
allow us to compare the different methods that are developed on a fixed task and
corpus.

1.3 Automatic information extraction methods

Our definition of information extraction states that a computer algorithm is used
to perform an automatic analysis of texts. It does not state however how this
algorithm is designed. In this section we outline some of the methods that have
historically been used in IE algorithms.

1.3.1 Historical overview

Performing an automatic analysis of text has been a goal of artificial intelligence
researchers from the very beginning of computer science (Jurafsky and Martin,
2008). The first extensively studied information extraction task is without doubt
syntactic sentence parsing, that tries to discover the structure of a sentence
according to a predefined grammar. Research on this topic started blossoming
at the end of the 1950°s and beginning of the 1960’s with the study of formal
language theory, generative syntax and automatic parsing algorithms. These
early parsing algorithms (e.g Harris (1962)) used pattern matching and keyword
search combined with simple heuristics for reasoning. By the end of the 1960’s
more formal logical systems were developed: Colmerauer (1970) defined a total
precedence context free grammar and used the logic programming language Prolog
to implement a deterministic sentence parser. Kay (1980) and Pereira and
Warren (1983), used an improved parsing algorithm (chart parsing, a dynamic
programming algorithm) but were still limited to deterministic algorithms. An
important disadvantage of these methods is that for an ambiguous sentence,
multiple parses are found without any indication of which parse is more likely.
Another successful example at the time is the SHRDLU program developed by
Winograd (1972). The program showed the possibilities of natural language
processing for human-computer interaction, allowing the user to give commands
to a computer program using complex sentences. It combined a sentence parser, a
memory of the previous interactions, and a method for disambiguating ambiguous
terms depending on the context. It however relied on a simple deterministic (Lisp)
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implementation and it was not clear how this method could be extended for usage
in a broader, more realistic domain.

A small number of information extraction tasks other than syntactic parsing were
studied during this time, such automatic pronoun resolution (Hobbs, 1977) and
discourse modeling (Grosz et al., 1977). Also here deterministic programs with
some simple heuristics were used.

An important shift in methods used for information extraction occurred with the
introduction of large annotated corpora, such as the Penn Treebank (Marcus
et al., 1994), the Penn Discourse Treebank (Miltsakaki et al., 2004) and the
TimeBank (Pustejovsky et al., 2003). These corpora made it possible to use
stochastic methods, which had already been successfully applied to other problems,
such as optical character recognition (Bledsoe and Browning, 1959) and speech
analysis (Jelinek et al., 1975; Baker, 1975). The beginning of the 20th century
saw a wide application of machine learning methods, such as support vector
machines (Boser et al., 1992; Vapnik, 1995), maximum entropy machines (Berger
et al., 1996) and graphical Bayesian models (Pearl and Shafer, 1988). The new
corpora also allowed a comparison of different information extraction algorithms on
identical test-corpora, a trend that further intensified with the advent of workshops
that perform a double-blind comparison of different systems on an identical test
corpus. Examples of these workshops are the Message Understanding Conferences'
(Grishman and Sundheim, 1996) on the detection of various types of events,
the Automatic Context Extraction? (Doddington et al., 2004) workshops on the
detection of entities, relations and events, the Senseval® (Kilgarriff, 1998) and
related SemEval workshops on word sense disambiguation, semantic role labeling,
identification of logic forms, metonymy resolution and other information extraction
tasks, and the shared tasks of the Conference on Computational Natural Language
Learning? (Stevenson and Carreras, 2009), on clause identification, named entity
recognition, semantic role labeling and dependency parsing.

1.3.2 Machine learning methods

Today machine learning algorithms are the dominant method to develop informa-
tion extraction algorithms. A machine learning algorithm is a computer program
that automatically constructs (parts of) the information extraction algorithm on
the basis of an annotated training set. The training set is a collection of natural
language texts that are annotated with the target output structures. Usually a
machine learning method aims to minimize a given error measure that quantifies
the difference between the automatic constructed outputs and the manual outputs.

Thttp://www.cs.nyu.edu/cs/faculty /grishman/muc6.html
2http://www.itl.nist.gov/iad/mig/tests/ace/

Shttp:/ /www.senseval.org/
“http://www.cnts.ua.ac.be/conll2010/
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Many different machine learning methods have been developed and applied on
information extraction methods, we refer to (Manning and Schiitze, 2002; Jurafsky
and Martin, 2008) for extensive overviews. In this thesis we focus on machine
learning methods that are based on graphical Bayesian models. These models use
a graphical representation to represent dependencies between different variables,
allowing for the construction of complex models which can easily be used for weakly
supervised and unsupervised learning. We will discuss graphical Bayesian models
at length in chapter 2.

1.3.3 Weakly supervised learning

A major disadvantage of machine learning methods is the large training set that
is necessary to learn accurate automatic information extraction algorithms. The
PropBank training corpus for semantic role labeling for example, contains 113.000
verbs for which all semantic roles have been manually annotated. A corpus of this
size is necessary for most information extraction methods since natural language is
very varied and machine learning methods thus need to learn a mapping for a large
number of different inputs. Furthermore, the labour intensive task of creating an
annotated training corpus needs to be repeated for every information extraction
task, or when a specific information extraction method needs to be applied on a
corpus in a different language or domain. This requirement greatly increases the
costs for the development of IE algorithms, both in terms of time and money.

A solution to this problem is the use of weakly supervised machine learning
methods. We define these methods as

Definition 1.3 Weakly supervised machine learning methods

Weakly supervised machine learning methods are machine learning methods that
use a labeled together with an unlabeled corpus to train information extraction
methods.

Today, large electronic collections of texts in various languages and domains exist
and can typically be obtained at a relative small cost. The most important goal of
this thesis is the development of weakly supervised algorithms that allow to create
information extraction algorithms with a small annotated training corpus. Ideally,
one would need to specify only a handful of examples for a given information
extraction task to create an automatic computer algorithm that can solve the task
up to a high level of accuracy.

In this thesis we consider two types of weakly supervised learning. The first type is
uni-modal weakly supervised learning, where we augment a small set of annotated
texts with a large corpus of unlabeled texts, and use these to improve accuracy
of information extraction methods and reduce the dependency of these methods
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on large annotated corpora. The second type is multimodal weakly supervised
learning, where we use supervised information extraction methods to automatic
generate descriptions of the content of images and video. These descriptions are
then used to train methods that perform an automatic analysis of these images or
video. This research is motivated by the observation that frequently, the difficulties
faced by automatic methods for image analysis are even greater then these faced
by natural language processing methods, because of the large variations in scale,
lighting conditions and relative orientation of entities in images.

1.4 OQutline thesis

We have introduced the major topics of our research and now describe the structure
of this text. This thesis is divided in three main parts that discuss respectively
supervised information extraction, uni-modal weakly supervised information
extraction and multimodal weakly supervised image annotation.

Before diving in the first part of this text we start in chapter 2 by describing
basic concepts and techniques used throughout this work. We give an extensive
introduction to directed Bayesian networks, which will be used to develop all
our supervised, weakly supervised and unsupervised models. This chapter will
also describe in more detail how information extraction methods are typically
developed, and give a number of examples of popular information extraction
methods that will help to situate the information extraction tasks tackled in this
thesis.

In part I we discuss supervised information extraction methods. This part
explains in detail how the texts that need to be labeled are converted to a feature
representation, how this representation is included in a directed Bayesian network
and how this network is used to generate an automatic labeling. We will apply this
approach to two specific information extraction tasks. Chapter 3 discusses word
sense disambiguation, where we develop a supervised method to determine the
meaning of a word depending of the context of that word and chapter 4 discusses
semantic role labeling where we develop a supervised method for the automatic
detection and classification of the prominent arguments of a verb.

In part II we discuss uni-modal weakly supervised learning, where we investigate
training methods that combine a labeled training set with an unlabeled set to
train accurate information extraction methods without relying on large hand-
tagged corpora. In chapter 5 we discuss a traditional approach to this problem:
semi-supervised learning. This approach uses a single Bayesian network that
to represent both labeled and unlabeled examples. The missing labels of the
unlabeled examples are iteratively estimated using Markov chain Monte Carlo
sampling techniques. We will see that this approach relies on a specific set of
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assumptions, and how a violation of these assumptions reduces the performance
of the final model.

We then turn to a different approach to weakly supervised learning: use a fully
unsupervised model to learn statistics or structures from a large unlabeled corpus
and use these statistics or structures in a supervised classifier. We develop the
latent words language model in chapter 6, which is a novel unsupervised model
that learns word similarities from a large set of unlabeled examples. These
similarities are learned to optimize the predictive accuracy of this model of unseen
texts, and can be successfully used in supervised information extraction methods.
We demonstrate this in chapter 7 by expanding the supervised models used for
word sense disambiguation and semantic role labeling with the learned similarities.
We also see in this chapter that this method compares favorably to other weakly
supervised methods proposed for semantic role labeling.

In part III we turn to the case of multimodal weakly supervised learning. In this
part we discuss methods that employ information extraction methods to aid the
automatic analysis of images and video. In chapter 8 we develop the appearance
model which finds the entities present in an image by analyzing a text describing
this image. This model is subsequently used in two applications, to align names
in the text with faces in the image, and to perform textual image retrieval.

Chapter 9 deals with the automatic annotation of video. We first focus on the
automatic annotation of actions of actors in the video, and apply the previously
developed semantic role labeling system to the transcripts of an video series. In
a second task we combine information extracted from the transcript with an
automatic analysis of the video to discover the different scenes in a video, and
to derive the location for every scene.

We conclude this thesis in chapter 10, where we summarize the work that was
performed, the lessons that were learned in the process, and promising directions
for future research.






Chapter 2

Foundations

“Artz'ﬁcz'al intelligence has done well in tightly constrained domains. Winograd
[--.] astonished everyone with the expertise of his blocks-world natural language.
Eztending this kind of ability to larger worlds has not proved straight- forward,
however... The time has come to treat the problems involved as central issues

Patrick H. Winston (1976)

In this chapter we introduce the basic concepts and techniques used throughout
this thesis. We start by describing a number of important information extraction
tasks in section 2.1. These examples will help to situate the information extraction
tasks tackled later in this thesis. We then proceed by giving an extensive
introduction to directed Bayesian networks in section 2.2. This framework was
used in all our models and we will describe how it describes a probability
distribution over a collection of variables and how it can be used for machine
learning.

2.1 Information extraction tasks

In the previous chapter we have described information extraction (IE) as the task
of extracting a predefined structure in natural language using computer algorithms.
In this section we make this description more concrete by describing some popular
information extraction tasks (section 2.1.1) and by describing the typical process
of developing an information extraction method (section 2.1.2).

11
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Word sense disambiguation :
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|Davis | received | 1119 |votes | in| Saturday|'s | election|,and | George Bush |got|402|.|

Named entity recognition :
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|Davis | received | 1119 |votes | in| Saturday!'s | election|,/land | George Bush |got|402|.!

Part-of-speech tagging :

W ® ® W W e W
|Davis | received | 1119 |votes | in| Saturday!'s | election|,/land | George|Bush | got | 402.!

Figure 2.1: Example information extraction tasks: word sense disambiguation,
named entity recognition and part-of-speech tagging.

2.1.1 Important information extraction tasks

We have previously described how historically syntactic sentence parsing was the
first extensively studied IE task. Today a lot of research is still performed on
parsing, but other IE tasks are also being extensively researched, of which we
describe some in this section. This will help to highlight the shared points in these
different tasks and will help to situate the IE tasks studied in this thesis.

Word sense disambiguation The task of word sense disambiguation is to segment
a text and to assign a label to every noun phrase, (non-auxiliary) verb phrase,
adjective and adverb in a text. This label indicates the meaning for that particular
word and is chosen from a dictionary of meanings for a large number of different
phrases. For example, in figure 2.1 the word “got” has been assigned the label
GET.04 from the WordNet lexical database, indicating that “got” in this context
means ‘“receive, obtain, incur”.

Named entity recognition Named entity recognition detects names and numbers
in a text and classifies these according to a small set of labels, usually including
PERSON, ORGANIZATION, LOCATION and DATE. In figure 2.1 both “Davis” and
“George Bush” are PERSON names and “Saturday” is a DATE.

Part-of-speech tagging This IE task assigns a syntactic label to every word in a
sentence. These syntactic labels reflect the grammatical category of every word in
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Syntactic sentence parsing :
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|Davis | received 11119 | votes | in| Saturday|'s | election|,/and | George|Bush | got | 402|.]

Semantic role labeling :
get.01

/ receive.01 \\A / \

AO A1 AM-LOC AO A1

| ' | . |

|Davis | received 11119 votes|in Saturday 's election|, and | George Bush [got|4021.!

Figure 2.2: Example information extraction tasks: syntactic sentence parsing and
semantic role labeling.

the given sentence. In figure 2.1 for example the word “Davis” is assigned “NNP”,
“received” is assigned “VBD” and “votes” “NNS”.

Syntactic sentence parsing1 In syntactic sentence parsing the computer program
determines the grammatical structure of a given sentence. Depending on the
grammar, this often comes down to finding the syntactic tree for a particular
sentence. The words in the sentence are leafs in this tree and internal nodes of
the tree are phrases with a syntactic label, i.e. NP for noun phrase or vp for
verb phrase. In figure 2.2 the sentence has been parsed using the Penn Treebank
constituency grammar (Marcus et al., 1994). It indicates, among others, the part-
of-speech tag for every word (e.g. NNp for “Davis”, vDB for “received”) and the
structure of the sentence: two independent clauses connected by the conjunction
“and”.

n our description of information extraction we do not distinguish between an analysis that
focuses on the semantics, i.e. the meaning of words or phrases, an analysis that focuses on the
syntactic properties of natural language or an analysis that focuses on the discourse of a particular
text. In our experience these different tasks reflect different goals but are very often solved with
identical, or very similar techniques. Furthermore there are many tasks (e.g. semantic role
labeling, see chapter 4) that straddle these different categories.
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Semantic role labeling Semantic role labeling (SRL) annotates every non-
auxiliary verb in a sentence with a structure called a semantic frame. A semantic
frame consists of a predicate label that indicates the meaning of the verb, and a
number of semantic roles. A semantic role is a label for a phrase in the sentence
indicating that this phrase is an argument to that verb. In figure 2.2 for example
the verb “received” has predicate label RECEIVE.O1 with meaning “get,gain” and
semantic roles “Davis” with label AO (receiver), “1119 votes” with label Al (thing
received) and “in Saturday’s election” with label AM-LOC (location). Note that
the predicate label GET.01 for the verb “get” is different from the synset label
GET.04 (figure 2.1) since they are labels from two completely unrelated databases
(i.e. PropBank and WordNet).

In this thesis we study word sense disambiguation (WSD) and semantic role
labeling (SRL). These two tasks highlight different difficulties for information
extraction tasks. The output of WSD is a single label for every word and the
difficulty of this task lies mainly in the correct selection of the label, where labels
have fine-grained distinctions in meaning that have to be determined from the
context. WSD methods thus often focus on creating an accurate model of the
context and on methods that are able to learn from only a small number of
examples per word sense. SRL in contrast involves selecting a label for a phrase
from a very small number of labels. Contrary, the difficulty here lies in the fact
that these labels need to be structured in a semantic frame, and that a single word
can be used simultaneously in different structures.

2.1.2 Developing information extraction methods

Two points in the design of automatic information extraction methods have
generally been the focus of attention: feature extraction and selecting an
appropriate machine learning method.

2.1.2.1 Feature extracting

The described information extraction tasks are generally very easy to perform
by humans but are extremely hard for computer programs. One of the main
reasons is the representation used to store texts. Where humans have an intuitive
understanding which texts express similar events, the computer stores texts as
linear sequences of characters, where texts with a similar meaning can have
completely different representations, or where only a small change to the characters
can drastically alter the meaning.

For this reason one of the most important steps in developing information
extraction methods is the mapping of the initial representation of texts to a
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representation that is more useful to the task at hand. This step is usually referred
to as feature extraction, and it involves the creation of a set of deterministic
rules that look for certain patterns (e.g. suffixes) in the text. Often one uses
the output of one information extraction method to create features for a second
method. We will for example use the output of a part-of-speech tagger in our
word sense disambiguation and semantic role labeling methods. Once the texts
are converted to the feature representation, they are passed to a machine learning
method.

2.1.2.2 Machine learning methods

The task of a machine learning method is to combine the different values of
the various features into a single prediction of the value of the label for that
word or phrase. Many different machine learning methods have been applied
with success to information extraction, such as support vector machines (Pradhan
et al., 2004), neural networks (Collobert and Weston, 2008) k-nearest neighbour
classifiers (Morante et al., 2008) decision trees (McCarthy and Lehnert, 1995) or
logistic regression (Snow et al., 2005). In this thesis we limit ourselves to a machine
learning method based on directed Bayesian networks. This framework is among
the most popular methods for information extraction, and it can easily be extended
to semi-supervised and unsupervised learning, a fact that is used extensively in
the following chapters.

2.2 Directed Bayesian networks

In this section we introduce the framework that is used to develop information
extraction algorithms throughout this thesis: directed Bayesian networks. We will
formally describe these models (section 2.2.1) and see how we can use them in
a machine learning setting (section 2.2.2). Finally we present a famous type of
Bayesian networks, hidden Markov models (section 2.2.3), which will be used at
several occasions in this thesis.

We only give an introduction to the aspects of Bayesian networks that are relevant
to the presented work, for a more complete treatment we refer to Bishop (2006).

2.2.1 Description of graphical Bayesian networks

A Bayesian network is a directed acyclic graph that represents probabilistic de-
pendencies between random variables. A Bayesian network BN = (Nodes, Arcs)
consists of a collection of nodes Nodes = [Node;...Nodey| and a collection of
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rain

wet sprinkler

Figure 2.3: Simple Bayesian network

arcs Arcs = [Arcy...Arey]. Every node Node; = (Val;, Dom;, Func;) represents
a random variable that can hold a value Val; € Dom; from the domain of that
node and a probability mass function Func; that gives a probability distribution
on the domain Dom,;, given the values of the parent of this node. Throughout this
text we will use both wariable and node to denote the same concept, a node in
the Bayesian network, and often we will use Node;, = x as shorthand for Val; =z
where x € Dom,.

The collection of arcs Arcs of the network capture the dependencies between the
nodes in the Bayesian network. Arc; = (Nodej, Nodey) indicates a directed link
from Node; to Nodey,. By definition, the model represents a factorization of the
joint probability of all random variables.

Definition 2.4 The probability distribution of a directed Bayesian network BN =
(Nodes, Arcs) is given by

N
P(Nodey, ...,Noden) = H P(Node; | Parents(Node;))

i=1
where Parents(Node;) denotes the parents of node Node;

Parents(Node;) = {Node;j|(Node;, Node;) € Arcs}

The fact that BN’s are directed acyclic graphs, ensures that this decomposition
exists and is unique. As an example we consider the small Bayesian network in
figure 2.3. This network has three nodes rainy, sprinkler, and wet and three arcs
{(rainy, sprinkler), (rainy, wet), (sprinkler, wet)}, and it represents whether the
outlook is rainy (yes/no), whether the sprinkler was turned on last night (yes/no)
and whether the lawn is wet (yes/no). The probability distribution of this network
has the decomposition

P(rainy, sprinkler,wet) = P(wet|rainy, sprinkler) x P(sprinkler|rainy) X P(rainy)
Some networks will have many variables, for instance one variable for every word

in a sentence w = [wi..wy]| (figure 2.4a). To represent these networks more
compactly, we only draw one representative node w,, and surround this node with
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Label

W, W, Wier Wy
(a) Without plate notation (b) With plate notation

Figure 2.4: Plate notation for Bayesian networks

a box, called a plate, labeled with K indicating that there are K nodes of this
kind (figure 2.4b).

Another convention that is used in this work, is that when drawing Bayesian
networks, a variable of which the value is known (i.e. observed) is indicated with a
shaded circle, and a variable that has an unknown (i.e. hidden or unobserved) value
is indicated with an empty circle. In figures 2.4a and 2.4b the nodes indicating the
words wy, are set to a certain value and are indicated with shaded circles, while
the value of Label is unknown and indicated with an empty circle.

Probability mass functions The Bayesian network tells us how to decompose a
probability distribution of the network into probability mass functions (pmf’s) of
single nodes?. It however doesn’t specify the form of these probability functions.
A pmf is defined by

Definition 2.5 A probability mass function is a function Func;(x)

Funci(x) : Dom; — [0,1] : Val; — P(Val; = x)

with the constraints that P(Val; = 2) >0 and ) P(\Val;, =2z)=1.

x€Dom,;
Examples of frequently used pmf’s are the Bernoulli distribution, the Binomial
distribution and the Poisson distribution.

Categorical distribution The probability mass function that will be used most
often throughout this work is the categorical distribution, which is also referred to
in literature as a multinomial distribution (e.g. Blei et al. (2003)), although these
distributions are in fact only equivalent if the number of trials of the multinomial

?Note that we limit ourselves to discrete probability functions, for the more general case, see
for instance (Bishop, 2006).
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distribution is 1. The parameters of the categorical distribution is a vector of
values [p;...pn], one for every of the N values in Dom;, with the constraints that
0<p; <1and Zjvzl p; = 1. The distribution is then given by a mapping from
every value z; € Dom; to the probability p; of observing this value.

Funci(z) : Dom; — [0,1] : © — p;

Other distributions used in this thesis (e.g. the Dirichlet distribution) will be
introduced when they are used in a particular information extraction method.

Conditional probability distributions Often we are interested how the probability
mass function changes depending on the values of the parents of that node, e.g.
we want to model the conditional probability distribution.

Let us take for example the node sprinkler in figure 2.3. We could use two different
categorical pmf’s for this node, one (e.g [0.02,0.98]) for when its parent node rain
has value yes and one (e.g. [0.30,0.70]) for when the value of rain is no, reflecting
the fact that only few people use their sprinklers when the outlook is rainy while
more people use them when it is not rainy.

In the general case, we have to consider nodes that have multiple parents. We can
choose a similar strategy as for the single parent node, where we use a different pmf
for every possible combination of values of the parent nodes. E.g. in the example,
we could use 4 different categorical pmf’s to model the distribution of wet given
the 4 combinations of values of rainy and sprinkler. A serious disadvantage of
this approach is that usually we want to learn the parameters of these different
functions from training examples, and that a different function for every possible
combination of values leads to an explosion of parameters. For this reason we
will often use a smarter approach: in section 6.1 we interpolate categorical pmf’s
for different contexts in language modeling, and in section 4.4 we use exponential
models to combine information from many features in a discriminative model.

2.2.2 Machine learning with Bayesian networks

The goal of a supervised machine learning method is to learn, from a set of N
manually annotated sentences D4 = [(wy,L1)...(wn, Ly)], @ mapping from a
sentence w; to the label L;. In reality every sentence w; is first transformed to
a feature vector Ftr; = [Ftr}, ..., FtrX], where every feature describes a specific
property of the words in the sentence. Generally, the feature vector contains
1 if that property is present and a 0 if the property is not present. We use
Bayesian networks in this thesis and create networks that contain variables for
both the features and for the labels to be recognized. The structure of the
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Bayesian network then specifies the probabilistic dependencies between these
variables. In this section we will see some concepts that are important with regard
to Bayesian networks in a machine learning setting: the maximum likelihood
estimate, the maximum probability estimate and the difference between generative
and discriminative Bayesian networks.

Maximum likelihood estimate During the training phase, we learn the param-
eters of our network from a set of labeled examples Dy = [(w1, L1)...(wn, Ly)]-
This training set contains N annotated examples that are assumed to be
independent and identically distributed. We use 6 to denote the parameters of
the Bayesian network, which is the union of the parameters of the probability
mass functions of all the nodes in the network. A number of methods can be
used to estimate these parameters, generally distinguishing between methods that
assume or do not assume a prior distribution on the parameters, and between
methods that find a single mazimum estimate of the parameters or that model the
entire posterior distribution for the parameters. We will usually use the mazimum
likelihood estimate (MLE), which does not assume a prior distribution and finds a
single maximum for the parameters. We define the likelihood function as:

N
L(D4|0) =[] P(wi, Ftr;|0)
i=1

We then find the parameters 6 such that this function has a maximal value. This
estimate is guaranteed to produce an optimal classifier for this network, given
a 0-1 loss function (DeGroot, 1970) (1) if the number of examples is sufficiently
large and (2) if it is possible to find parameters 6 such that the parametrized joint
likelihood of sentences and labellings P(w;, L;|0) equals the true joint likelihood
P(w,, L;), or more informally, if the model is “correct”. This is expressed in the
following assumption

Assumption 2.1 Correct model assumption

We can find parameters 0 such that P(w,, L;|0) = P(w,, L;).

In our applications both assumptions will generally be violated to some extent,
but for supervised models, assumption (1) is generally more important. Since the
number of samples is always limited, the maximum likelihood estimate might have
some unwanted properties, such as assigning zero probability to events that were
never observed in the training set. For this reason we will usually modify the MLE,
using a prior distribution (e.g. chapter 9) or smoothing techniques (e.g. section
4.3.2). Although assumption (2) is less important for supervised models, we will
see in chapter 5 that for semi-supervised models this assumption is critical.
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Figure 2.5: Example of a generative and discriminative Bayesian network

Maximum probability estimate After determining the parameters of the Bayesian
network, we can use the model to analyze previously unseen texts. For a given
text we find the set of values for the unobserved variables (e.g. the labels) such
that the joint probability of these variables and of the observed variables (e.g. the
words or features) is maximal. A naive approach to find this maximum is to try all
possible combinations of variables, which is generally not feasible because of the
exponential number of possible combinations. For networks that can be divided
in overlapping subnetworks, one can employ a dynamic programming algorithm
which is guaranteed to find a global optimal solution (Bellman and Dreyfus, 1962).
For other networks one can use a beam search that performs a breadth-first search
but only keeps the most likely solutions in every step. This method has the
disadvantage that it is not guaranteed to find a global optimal solution.

Generative and discriminative models The number of different Bayesian
networks that can be defined is only limited by the creativity of the human
mind. However, many tasks have a common setting where a set of observed
variables represent the input, and a set of hidden variables represent the labels
that need to be assigned to this input. In an information extraction setting for
instance, we will represent the texts to be analyzed with a number of features
Ftr; = [Ftr}, ..., FtrX] derived from the word w;, such as the lemma, prefix or
suffix. The (unknown) labels L; are hidden variables that are assigned to every
word w;. Two possible models to represent the dependencies between the hidden
and observed variables are shown in figures 2.5a and 2.5b.

The first model is a generative model, specifying a joint probability distribution
over observations (features) and hidden states (labels), or less precise, try to
“explain both labels and features”. Usually generative networks employ the naive
Bayes assumption, where all features are considered independent given the value
of the label. The probability distribution of this network is given by
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K
P(L;, Ftr;) = P(L;) x | [ P(Ftrf|Ls)
k=1

The probability of the labels given the different observed features is

P(L;) x [T, P(Ftr¥|L:)

P(L;|Ftr;) =
(hilEer) X, P(FH)

since [[r_, P(Ftr¥) is independent of the label, we get

K
P(Li|Ftr;) ~ P(L;) x [[ P(Ftrf|L;)
k=1

A discriminative Bayesian network is shown in figure 2.5b. This network specifies a
conditional probability over the hidden states, or less precise, tries only to “explain
the labels”. The probability distribution of this network is given by

K
P(L;,Ftr;) = P(L;|[Ftr;) x [ [ P(Ftrf)
k=1

These models do not model P(Ftr;), since the features are always given, and thus

P(Li7FtI‘i) ~ P(L1|Ftr1) (21)

This conditional pmf needs to combine information from many features, which can
for example be modeled with an exponential distribution (Ratnaparkhi, 1998).

When comparing the performance of generative and discriminative models, one can
compare the asymptotic error, i.e. the error of the model with an unlimited number
of labeled examples, and the variance, i.e. the variance of the error when only a
limited number of labeled examples is given. Generative models generally use
the naive Bayes assumption, considering all features independent given the value
of the label, and thus make strong modeling assumptions. For this reason their
features can be estimated with a small number of training examples, leading to a
low variance with a limited training set. The independence assumption however
does usually not hold in practice, which leads to a systematic modeling error even
when a large number of labeled examples is observed. Discriminative models with
an exponential distribution do generally not have this disadvantage, and will thus
generally have a lower asymptotic error. They do however need to model the more
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Figure 2.6: Hidden Markov model (HMM) and maximum entropy Markov
(MEMM) model.

complex conditional distribution in equation 2.1, requiring more training examples.
For more information we refer to Bouchard and Triggs (2004) and Ng and Jordan
(2002).

For information extraction, discriminative models are usually superior (e.g. for
word sense disambiguation (Tratz et al., 2007) or semantic role labeling (Lim
et al., 2004)), which is why they are employed here. We will however also consider
generative models because of the ease with which they can be used for semi-
supervised learning (chapter 5).

2.2.3 Hidden Markov models

One of the more well-known Bayesian networks are hidden Markov models. Hidden
Markov models were first used for speech recognition (Baum et al., 1970; Baker,
1975) but have then found a large number of applications, such as natural language
modeling (Manning and Schiitze, 2002), character recognition (Nag et al., 1986),
part-of-speech tagging (Church, 1988; Cutting et al., 1992) and named entity
recognition (Bikel et al., 1999). These models have a common structure, shown
in figure 2.6. The network consists of a sequence of observed states together with
a number of hidden states, and the hidden states are assumed to be dependent
on one or more previous hidden states. For example, for speech recognition, the
observed states are the spectral vectors of the sound signal during a short period
of time and the hidden states are the phonemes or phones, or for part-of-speech
tagging the observed states are the words in a text (or features derived from these
words) and the hidden states are the part-of-speech tags.

Figure 2.6 shows a HMM where a hidden state h; has only a conditional
dependency with the previous state, a so-called first order HMM. Sometimes
however, it can be advantageous to take a larger history into account. This gives
rise to second order HMM’s, where every hidden state is conditionally dependent
on the two previous states, or to a third order HMM where every hidden state
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is conditionally dependent on the three previous states. Enlarging the history
dramatically increases the number of parameters in a model, since the number of
parameters is exponential in the number of hidden states. For example, a second
order HMM for a part-of-speech tagger with 25 tags will have more than 15625
parameters. We will see in section 6.1 appropriate smoothing methods to overcome
the problem of sparseness that are often associated with models with large numbers
of parameters.

One of the nice properties of HMM’s is that efficient algorithms exist for training
and inference. When the hidden states are annotated in the training set (such
as for instance when training a supervised part-of-speech tagger), the maximum
likelihood parameters of the model can be found trivially in a closed form solution.
Also when one tries to learn the hidden states in an unsupervised manner, and
they have not been annotated in the training set, one can use an efficient EM-
algorithm called the Baumn-Welch algorithm (Baum et al., 1970). We will discuss
this algorithm in detail in section 6.2.2.

Also to find the most likely values for the hidden variables given a sequence of
observed variables, an efficient algorithm exists, the Viterbi algorithm (Viterbi,
1967). This algorithm will find the globally maximal sequence of states in a time
complexity that is linear in the length of the sequence, and quadratic (for a first-
order HMM) or cubic (for a second-order HMM) in the number of possible values
for the hidden states.

HMM are by definition generative models, and a number of discriminative
models with similar structure and properties have been defined, including
mazimum entropy Markov models (Ratnaparkhi, 1996) and conditional random
fields (Lafferty et al., 2001). Although these models have been found to have
superior performance on a number of information extraction tasks, such as part-
of-speech tagging (Lafferty et al., 2001) and named entity recognition (McCallum
and Li, 2003), they require significantly more complex methods for training, and
can not easily be extended to include hidden variables for semi-supervised training.
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Outline part | : Supervised information extraction

In this part we study the supervised approach to information extraction, which
has been the dominant approach to information extraction in the last decade. We
first extract a set of features from the word or phrase being labeled, and then use
a machine learning method to select he most likely label for this word or phrase.
This machine learning method is trained on a large number of manually annotated
examples.

When developing a novel information extraction method, the major focus is on
selecting the right types of features and on selecting an appropriate machine
learning method. In the framework of directed Bayesian networks this comes
down to selecting an appropriate structure of the Bayesian network and selecting
good probability mass functions. We will demonstrate these techniques on two
information extraction tasks: in chapter 3 we develop a model for word sense
disambiguation where the context is modeled with a large number of features, and
in chapter 4 we develop a model for semantic role labeling where we need to
model the syntactic role of a word and the relationship between that word to the
verb. For both models we will compare a discriminative and a generative Bayesian
network.

The work in this part of the thesis has been partially published in the following
articles. Parts of this research have not been previously published.

- Koen Deschacht and Marie-Francine Moens. Efficient Hierarchical Entity
Classification Using Conditional Random Fields. In proceedings of the 2nd
Workshop on Ontology Learning and Population, Sydney, 2006.

- Koen Deschacht and Marie-Francine Moens.  Using the Latent Words
Language Model for Semi-Supervised Semantic Role Labeling. In proceedings
of the 2009 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2009), Singapore, August 7, 2009

A condensed form of the first article was also presented at the 2006 BNAIC
conference:

- Koen Deschacht and Marie-Francine Moens. Efficient Hierarchical Entity
Classification Using Conditional Random Fields, 18th Belgian-Dutch Con-
ference on Artificial Intelligence, Namur, 2006.



Chapter 3

Supervised word sense
disambiguation

In this chapter we describe word sense disambiguation, the task of selecting the
right sense of a word depending on the context. We introduce this task in section
3.1, and outline the database of word senses and the training and test corpus used
in section 3.2. We then develop an automatic method for this task where a number
of features to model the context are used in a generative or discriminative Bayesian
network in section 3.3. We evaluate these models in section 3.4 and conclude this
chapter in section 3.5.

3.1 Introduction

A word can have different meanings depending on the context. Take for example
the following sentence

“The bark sails out of the bay and prepares its cannons for the
impending fight.”

This sentence contains a number of ambiguous words, such as “bark” (which can
mean “sailing ship”, “covering of a tree” or “sound made by a dog”), “sails” (“pieces
of fabric to propel a sailing vessel” or “to travel on water propelled by wind”),
“cannons” (“heavy artillery guns” or “lower parts of the leg in hoofed mammals”)
and “fight” (“battle” or “boxing or wrestling match”). Although humans can
intuitively determine the meanings of the words in this sentence, this is much more

complex for computer algorithms. Word sense disambiguation (WSD) is usually
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defined as the task of selecting, from a dictionary of possible senses for a particular
word, the right sense for a particular word in a particular context. Generally, one
assumes that syntactic disambiguation can successfully be performed with a part-
of-speech tagger and that WSD can focus on distinguishing senses among words
belonging to the same syntactic category, e.g. finding the correct meaning of “bark”,
given that it’s a noun.

Word sense disambiguation is an important part of natural language processing,
since it is a subtask for many tasks, such as machine translation, information
retrieval, syntactic parsing, etc. The first research on word sense disambiguation
can also be traced to systems that performed machine translation (Weaver, 1955).
Since then many WSD systems have been developed, we refer to Ide and Véronis
(1998) for an overview. Generally one can distinguish three approaches to WSD,
a symbolic approach, a knowledge-driven approach and a data-driven approach.
Symbolic methods for WSD were usually embedded in larger systems intended
for full language understanding. An example is the work by Masterman (1957)
who developed a semantic network to derive representations of sentences in an
interlingua. In the knowledge-driven approach an external knowledge source is
used to find the meaning of a particular word in a certain context. A popular
knowledge-driven method is for instance to compare the dictionary entries for a
particular word with the dictionary entries for words surrounding this word, and
select the entry that has the largest number of overlapping words with the entries
of surrounding words (Lesk, 1986). In a data-driven approach, all ambiguous words
in a collection of texts are annotated with the correct sense. A machine learning
approach can then be used to learn a classifier for the correct model of the context
for a particular sense. An example of early work using this approach is Black
(1988).

Today arguably the best comparisons of different WSD systems are the Senseval
(Snyder and Palmer, 2004) and SemEval (Pradhan et al., 2007) workshops, where
the top ranking systems use machine learning methods that employ large numbers
of features extracted from the context (e.g. Tratz et al. (2007)). These features
typically capture contextual information (e.g. words surrounding the current
word), syntactic information (e.g. subject, object) and semantic information (e.g.
named entities types in the context).

3.2 WordNet

We use the WordNet dictionary of senses, which is arguably the most commonly
used database for word sense disambiguation. This allows us to compare our work
with the best performing systems from the SemEval workshop (Pradhan et al.,
2007).
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Figure 3.1: Fragment of the WordNet hypernym /hyponym tree

3.2.1 Description

WordNet (Fellbaum, 1998) is a lexical database that organizes English nouns, verbs
and adjectives in synsets. A synset is a collection of words that are synonyms, or
that are closely related and that represent a single concept or entity. An example
of such a synset is “person, individual, someone, somebody, mortal, soul”, referring
to a human being. The 155.327 words in WordNet (v2.1) are organized in 117.597
synsets. Additionally, WordNet defines a number of relations between synsets,
such as the holonym, meronym, pertainym, and the important hypernym relation.
A word X is a hypernym of a word Y if Y is a subtype or instance of X. For
example, “bird” is a hypernym of “penguin”. This relation organizes the synsets in
a hierarchical tree of which a fragment is pictured in fig. 3.1.

For a given word, we can list all the synsets that contain this word. The task of
WSD using WordNet thus comes down to selecting the correct synset out of all
possible synsets for a particular word.

3.2.2 Training and test corpus

We used the Semcor corpus (Fellbaum, 1998; Landes et al., 1998) for training. This
corpus, which was created at the Princeton University, is a subset of the English
Brown corpus containing almost 700,000 words. Every sentence in the corpus is
chunked into noun and verb phrases. The chunks are tagged by part-of-speech and
both noun and verb phrases are tagged with their WordNet sense. To be able to
compare our system with other systems, we use the test data from the Senseval3
workshop (Snyder and Palmer, 2004), which has been preprocessed in a similar
manner.
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3.2.3 Evaluation metric

We evaluate our system with the official scorer of the Senseval3 workshop'. This
scorer measures the accuracy of the assigned labels, i.e.

corr

Ny

acc =

where N, is the number of phrases that is assigned the correct label and N, is
the total number of phrases in the test set.

3.3 Supervised WSD models

In this section we discuss the models we have developed for WSD. We first discuss
the features employed (section 3.3.1), and then discuss a generative (section 3.3.2)
and a discriminative model (section 3.3.3).

3.3.1 Features

The features used in our system for WSD are mainly based on Tratz et al. (2007).

Contextual information The contextual information we use consists of the
word lemmas on either side of the word, within a certain window and within
sentence boundaries. Lemmatisation of words, i.e. mapping a word to its

PN YSI b

canonical form (e.g. “runs”—"run”, “is”—“be”), is performed by an automatic
program, part of the WordNet package?.

Syntactic information We parse the sentences in their grammatical structure
using an automatic parser (Nivre et al., 2006) and include grammatical
dependencies (e.g. subject, object) and morpho-syntactic features such as
part-of-speech, case, number and tense. Features are extracted for all tokens
for which the distance to the word to be disambiguated is smaller then 4
arcs in the dependency tree.

Semantic information We incorporate named entity types (e.g. PERSON,
LOCATION, ORGANIZATION). We use OpenNLP and LingPipe to identify
named entities, replacing the strings identified as named entities with the
corresponding entity type. We also replace numbers in the text with the
type label NUMBER.

! Available from http://www.senseval.org/senseval3/scoring
2 Available from http://wordnet.princeton.edu/
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Figure 3.2: Bayesian networks for supervised word sense disambiguation. n is the
index of the word out of N words, k the index of the feature out of K features.

Hypernyms Hypernyms are retrieved from WordNet and added to the feature
set for all noun tokens selected by the contextual and syntactical rules.
We include the hypernyms of the most frequent sense, and we include the

entire hypernym chain (e.g. “motor”, “machine”, “device”, “instrumentality”,
“artifact”, “object”, “whole” and “entity”).

3.3.2 Generative WSD model

Our first method for WSD uses the network shown in figure 3.2a. This network
has two types of nodes, Ftr¥ and Synset;, representing the features and the synset
of a particular word w;. Categorical pmf’s are associated with the Synset; node
and with every individual Ftri-C node respectively. The probability distribution of
the network is given by

K
P(Synset;, Ftr;) = P(Synset;) x H P(Ftr¥|Synset;)
k=1

This model is a generative model that assumes that all features are independent,
given the synset of the word. The parameters of the categorical distributions
are determined using the maximum likelihood estimate, smoothed with a fixed
constant. For example, we estimate P(Ftr¥|Synset;) as

c(Ftrk Synset;) + a
c(Synset;) + aK

P(FtrF|Synset;) =

where c(Ftrf, Synset;) is the number of times the feature FirF is present in
the training set for a word with synset Synset;, c¢(Synset;) is the number of
occurrences of Synset; in the training set, « is a positive smoothing constant and
K is the number of unique features.
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| model | nouns | verbs | adjectives | all |

generative 57.98 | 56.43 50.78 55.15
discriminative | 65.12 | 68.15 54.10 66.32

Table 3.1: Results for the generative and discriminative models for WSD on the
Senseval3 test set in terms of % accuracy.

3.3.3 Discriminative WSD model

We compare the generative model with a discriminative model, shown in figure
3.2b. Although the network has the same nodes, the direction of the dependency
is reversed. The probability distribution is given by

K
P(Synset;, Ftr;) = P(Synset;|Ftr;) x H P(FtrF)
k=1

~ P(Synset;|Ftr;)

We model the pmf of P(Synset;|Ftr;) as an exponential distribution, of which the
parameters are estimated according to the maximum entropy principle. Since there
is no closed form solution to find this maximum we turn to an iterative method.
In this work we use generalized iterative scaling®, although other maximization
methods can also be used. Although the maximization method used will have little
influence on the final results, more advanced methods (such as (quasi-) Newton
optimization) often have a much lower time complexity. The pmf of the features
is not modeled, since these probabilities do not influence the relative conditional
probabilities of the labels.

3.4 Evaluation of supervised WSD models

For the generative and discriminative models described above we select, from the
5 different types of features described above the combination with a maximal score
on a held out set*. For the generative model this is the combination of features
Conteztual information and Syntactic information and for the discriminative
model the combination Contextual information, Syntactic information, Seman-
tic information and Hypernyms. This is in accordance to the common observation

3We use the mazent package available on http://maxent.sourceforge.net/
4To select the best features we train the model on 90% of the Semcor corpus and use 10% to
compute the accuracy of the model for a certain combination of features.
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that discriminative models are more successful in combining larger number of
features compared to generative models. The reason for this is that generative
models assume that features are conditionally independent, and a larger number
of different types of features are more likely to capture dependencies that violate
this assumption.

We then train the model on the Semcor corpus and evaluate on the Senseval3
corpus. We see from the results in table 3.1 that the discriminative model
outperforms the generative model, with more than 10% difference in accuracy.
Both models perform best for verbs and nouns, and find disambiguation of
adjectives particularly hard. This is a trend that is observed for most word sense
disambiguation systems. Comparing our results to others, we see that our accuracy
is state-of-the-art, slightly higher (Decadt et al., 2004; Kohomban and Lee, 2005;
Mihalcea and Faruque, 2004) or lower (Tratz et al., 2007) than others.

It is intriguing that no systems seems to achieve more than 70% accuracy on
this dataset. The reason for this is the very fine-grained distinctions in meaning
between different WordNet senses. Take for example the noun “man”. This noun
has 11 different senses, of which three are “the generic use of the word to refer to
any human being", “all of the living human inhabitants of the earth” and “any living
or extinct member of the family Hominidae characterized by superior intelligence,
articulate speech, and erect carriage”. It is clear that in a given text, selecting
the correct synsets from this set is a non-trivial task, even for humans. For this
reason some people have proposed to merge WordNet synsets that are very close in
meaning, creating so-called super-senses, which allow automatic systems to achieve
much higher accuracies. We have not pursued this approach here.

3.5 Conclusions of this chapter

We have presented a supervised approach to word sense disambiguation. We use
a number of features to model the context of a particular word within a certain
window, where we use the words in the context, syntactic information, named
entities and hypernyms of the words occurring in this window. These features were
used in two supervised classifiers, a generative and a discriminative classifier. For
both classifiers we found the optimal combination of features, and noticed that the
discriminative model could combine a larger number of non-independent features,
which can be explained by the independence assumption made by generative
models. Upon evaluation on the test set we found that the discriminative model
outperforms the generative model, and that its performance is very close to the
state-of-the-art.






Chapter 4

Supervised semantic role
labeling

In this chapter we address the second information extraction task that will serve as
a benchmark of the herein proposed information extraction methods: semantic role
labeling (SRL). This information extraction task has a long history in linguistics,
which we will briefly discuss in section 4.1. We use the PropBank definitions of
semantic roles, which we introduce in section 4.2, and in section 4.3 we discuss the
features and the two models that are used to tackle this task. We evaluate these
models in section 4.4 and conclude this chapter in section 4.5.

4.1 Background

Semantic roles and semantic frames have a long tradition in linguistics (Fillmore,
1968; Gruber, 1970) where semantic frames are often defined as script-like
structures of common actions or situations and semantic roles as typical
participants of, or arguments for, these actions or situations. Historically, semantic
frames were proposed as a fundamental building block used by people to organize
their memory and conceive the world, e.g. Schank and Abelson (1977).

Today, semantic role labels are usually interpreted as annotations of sentence
constituents (e.g. mnoun phrases) that classify the meaning of the constituent
with regard to a verb in the sentence (e.g. by assigning a label to parts of
the sentence that answers “who”, “where”, “when”, ... for a particular verb).
The term semantic frame is used to refer to the semantic roles for a particular
verb together with a classification of the verb according to a set of predefined
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meanings. This provides an analysis of the sentence that can be situated between
a grammatical (e.g. syntactic sentence parsing) and semantic analysis (e.g. word
sense disambiguation), and offers a semantic structure that generalizes across
different syntactic alternations of expressing identical content (Palmer et al.,
2005). These structures have been used in a wide range of applications, such
as in detecting and filling templates from texts that describe market fluctuations
(Surdeanu et al., 2003), selecting correct answers to natural language questions
(Narayanan and Harabagiu, 2004; Shen and Lapata, 2007), creating a short
summary of a set of documents (Melli et al., 2005), translating texts from one
language to another (Boas, 2002) detecting subjective verbs and their arguments
(Bethard et al., 2004) and automatic text-to-scene conversion for traffic accident
reports (Johansson et al., 2005).

A number of collections of semantic roles have been defined, differing in underlying
theoretical assumptions and goals. Three popular collections are FrameNet (Baker
et al., 1998), VerbNet (Levin, 1993) and PropBank (Palmer et al., 2005). An
alternative approach to semantic role labeling is the framework developed by
Halliday (1994) and implemented by De Busser et al. (2002) and Mehay et al.
(2005). PropBank has thus far received the most attention of the NLP community,
and is used in our work.

4.2 PropBank

4.2.1 Description

The PropBank project (Palmer et al., 2005) defines for a large collection of verbs a
set of predicates that reflect the different senses of the verb. The predicates of the
verb ‘run” for example include run.01 “operate, proceed”, run.02 “walk quickly”
and run.03 “cost”. Every predicate label has a number of roles, where label A0
is assigned to the most prominent argument in the sentence (Al for unaccusative
verbs) and labels Al to A5 are assigned to other salient arguments for that verb
(Merlo and van der Plas, 2009). Table 4.1 lists the semantic roles for a selection
of verb senses. Although roles are defined for every predicate separately, in reality
roles with identical names tend to be syntactically and semantically similar for
all predicates, a fact that is exploited to train accurate role classifiers. A small
number of arguments is shared among all senses of all verbs, such as temporals
(AM-TMP), locatives (AM-LOC) and directionals (AM-DIR).

Additional to the frame definitions, PropBank has annotated a large training
corpus containing approximately 113.000 annotated verbs. An example of an
annotated sentence is
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| role | run.01 | debate.01 | shoot.02
A0 operator debater shooter
A1l | machine, procedure thing discussed corpse
A2 employer person debated against gun
A3 co-worker - location of wound
A4 instrumental - -

Table 4.1: Semantic roles in PropBank for a selection of verb senses: run.01
“operate, proceed”, debate.01 “to discuss” and shoot.02 “kill with a gun”.

[John 40| [breaks preqr.01] [the window a1] [with a rock as].

Here break.01 is the first sense of the verb “break” with meaning “cause to not
be whole”. John has the semantic role A0 “the breaker”, “the window” has role
Al “thing broken” and “with a rock” has role A2 “instrument”. The semantic role
labeling is preserved across different syntactic realizations. In, for instance, the
annotated sentence “[The window 41] [broke preqk.01].”; “the window” has a different
syntactic position but is also assigned role A1. Although we will in generally talk
about labeling semantic roles, our systems also perform, and are evaluated on,
identification of the correct predicate label for the verb (see section 4.2.3).

A sentence with multiple verbs has a separate role labeling for every verb. In for
example the sentence

“Big investment banks refused to step up to the plate.”

“Big investment banks” is labeled as A0 “entity refusing” for the verb “refused” and
as Al “thing moving” for the verb “step”. Note that semantic role labeling systems
typically assume that a frame is fully expressed in a single sentence and thus do
not try to instantiate roles across sentence boundaries.

4.2.2 Corpus

We perform our experiments on a standard corpus for semantic role labeling, used
in the CoNLL 2008 shared task (Surdeanu et al., 2008)!. The sentences in the
corpus are mainly taken from news texts in the English language from the Wall
Street Journal (from the Penn Treebank corpus (Marcus et al., 1994)) and a small
selection of English texts from 15 different sources, including news texts, non-
fictional and fictional stories and book reviews (from the Brown corpus (Francis,

L Although the CoNLL 2008 shared task evaluated semantic role labeling on both verb and
noun phrases, we limit ourselves to semantic role labeling on verbs.
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1964)). The corpus is split into three disjoint parts, for training (39279 sentences),
testing? (2824 sentences) and a held-out section (1334 sentences). The manual
annotations of the sentences are the annotations from the PropBank corpus, but
are converted from labels for constituents to labels for head words. For example,
the annotated text “[John 4] [breaks preak.01] [the window 4] [with a rock ao].”
in the PropBank corpus is converted to “[John 4| [breaks preqr.01] the [window
A1] [with 42] a rock.”. For details on this conversion, we refer to (Surdeanu et al.,
2008).

4.2.3 Evaluation metric

To evaluate the output of our automatic SRL system we use the evaluation metric
used in the CoONLL 2008 shared task (Surdeanu et al., 2008). The evaluation metric
counts the number of correct labels, i.e. predicate labels and semantic role labels.
A predicate label is considered correct if the label corresponds to the label in the
manual annotation for that verb. A role label for a particular word is considered
correct if the label corresponds to the label in the manual annotation for that
word, independently of the label of the verb for that role. This scoring strategy
implies that if a system assigns an incorrect predicate label, it still receives some
points for the arguments correctly assigned.

For a given test set, N, is the number of predicates and role labels that are
correctly classified, N4y is the number of predicates and role labels in the manual
annotation and N, i the number of predicates and role labels in the automatic
annotation. Precision, recall and F'1-measure are defined as

corr precision * recall

N,
recall = =2~ Fl1=2x —
auto man precision + recall

precision =

4.3 Supervised SRL models

We will now discuss the models used for semantic role labeling. We first discuss
the features used to represent the input text (section 4.3.1) and then consider two
different models, based on a generative (section 4.3.2) and discriminative (section
4.3.3) Bayesian network.

2In the shared task the test set is split in a set with sentences from the Wall Street Journal
and a set with sentences from the Brown corpus. We perform our experiments on all sentences
from both sets.
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Figure 4.1: Example of the path feature extracted from the syntactic parse tree.
The path “nnsTnpTinTppTslslvplvdb” is traversed going from “votes” to “received”.

4.3.1 Features

Every word in the CoNLL 2008 corpus is tagged with its part-of-speech by an
automatic tagger (Ciaramita and Altun (2006), using the Penn Treebank tags)
and a syntactic dependency tree is constructed for every sentence by an automatic
parser (Nivre et al., 2006). These automatic annotations are, together with the
word tokens, converted to a number of features used in our semantic role labeling
classifiers. These features (except Split path) have been previously discussed, see
for example (Gildea and Jurafsky, 2002; Lim et al., 2004; Thompson et al., 2006).
The number in brackets in the following list denotes the number of unique features
for that type in the CoNLL 2008 corpus.

Word Unigram word tokens, including punctuation. (37079)
Stem Word tokens reduced to their stem, e.g. “walks” -> “walk”. (28690)
POS The part-of-speech tag for every word, e.g. “NNP”. (77)

Neighbor POS’s The concatenated part-of-speech tags of the word before and
the word just after the current word, e.g. “RBS_JJR”. (1787)

Path This important feature describes the path through the dependency tree from
the current word to the position of the predicate, e.g. “nnsTnpTinTppTslslvplvdb”
in figure 4.1, where ‘1’ indicates going up a constituent and ‘|’ going down
one constituent. (829642)

Split Path Because of the nature of the path feature, an explosion of unique
features is found in a given data set. We reduce this by splitting the path
in different parts and using every part as a distinct feature. We split, for
example, the previous path in 8 different features: “nns”, “Tnp”, “Tin”, “Tpp”,
“ls”?, “ls”, “lvp”’lvdb”. Note that the split path feature includes the POS
feature, since the first component of the path is the POS tag for the current
word. This feature has not been used previously for semantic role detection.

(155)
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Figure 4.2: Generative model for SRL. m is the index of the sentence, out of a
corpus of M sentences, j is the index of the current predicate, out of N, words in
the sentence and k is the index of the feature, out of K features.

Child words The word tokens of the children in the dependency tree of the
current word, if any (34518).

Child POS’s The POS tag of the children in the dependency tree of the current
word, if any (77).

Although most of the described features are independent of the predicate verb, the
value of Path and Split _path differs with regard to the predicate verb. For this
reason we use Ftrj, = [Ftrjl-i...Ftrﬁ ] to denote the K features of role rj;, where j
indicates the index of the predicate verb.

4.3.2 Generative SRL model

The generative Bayesian network for semantic roles used in this work is very similar
to the network proposed in (Thompson et al., 2006) where it is used for semantic
frame detection and classification on the FrameNet data set.

For a particular verb w; at position j in sentence s,, and labeling L; = (Pred;,r;),
where Pred; is the predicate label and r; = [rj;...7;n] are the role labels for all
other words in the sentence, the model is defined as in fig. 4.2. The model
assumes that the predicate label Pred; generates the features Ftr;; and generates

3The only major difference is that in (Thompson et al., 2006) the model is not a fully generative
model, since the predicate label is generated by the predicate verb. In our model we assume that
the predicate label generates the predicate verb. This way the model is a fully generative model
that can be used for semi-supervised learning (see chapter 5).
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Figure 4.3: Discriminative model for SRL. m is the index of the sentence, out of
a corpus of M sentences, j is the index of the current predicate, out of N, words
in the sentence and k is the index of the feature, out of K features.

a sequence of role labels r;, where every role r;; is dependent on the previous role
rji—1. Finally, every role r;;, i # j, generates the features Ftr ;.

The probability distribution of this network is given by

N
P(Predj, rj, FtI‘jj) = P(Predj) X H P(Tji|Predj7 Tji_1)
i=1

K K

< [[ PFtrf;|Pred;) < T[T [ P(Ftrflrii)
k=1 1=1k=1

We assign a categorical distribution to the Pred; node, and a collection of
categorical distributions to the rj;; and Ftrﬁ- nodes, one for every combination
of values of their parents. Given an unlabeled sentence w,, = wi,...,wy and
predicate word w;, we find the labeling L; with the highest probability P(L;,w,,).
Given the predicate label p;, the model is equivalent to a Hidden Markov Model
model, and the optimal labeling L; can easily be found using the Viterbi algorithm
(Viterbi, 1967). To find the optimal predicate label p;;, we run the Viterbi
algorithm for every value of the predicate label and find the maximum product of
the prior probability of the predicate and the role labels for that predicate.

4.3.3 Discriminative SRL model

Since discriminative models have been found to outperform generative models
(Lim et al., 2004) for SRL, we propose an additional discriminative model. The
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| | 5%L [ 20%L [ 50%L | 100%L ]

Supervised generative model 38.03% | 54.42% | 58.38% | 68.33%
Supervised discriminative model | 40.49% | 67.23% | 74.93% | 78.65%

Table 4.2: Results (in Fl-measure) for the fully supervised generative and
discriminative models, using different fractions of the CoNLL 2008 training set.
Results are average over 10 random subsets.

structure of the model (fig. 4.3(b)) is similar to the previous generative model,
although the dependencies have been reversed. The model assumes that the role
label rj; for the word w; is conditioned on the features Ftrj; and on the role label
rji—1 of the previous word, and that the predicate label Pred; for word w; is
conditioned on the role labels r; and on the features Ftr;;. The likelihood of this
model is given by

N
P(Predj7 ry, Ftl‘jl7 ) = P(Predj |I‘j7 FtI‘jj) X H P(TjilFtI‘ji7 Tji—1, Predj)
i=1

This model can be seen as an extension of the standard maximum entropy Markov
model (Ratnaparkhi, 1996) with an extra dependency on the predicate label.

4.4 Evaluation of supervised SRL models

For both classifiers we choose the sets of features used by that classifier as the
set that gave best performance when training the classifier on the full training
set and testing on a held-out set, disjoint from both training and test set. For
the generative model this was the features Stem, Neighbor POS’s, Path and Child
words, and for the discriminative model, Word, Stem, Neighbor POS’s, Split path
and Child words.

We perform a number of experiments where we compare the performance of the
generative and discriminative models on training sets of different size. We perform
experiments with 5%, 20% and 50% and 100% of the full training set. If only a
subset of the training examples is used we perform 10 different experiments with
random subsets and average the results. A first conclusion that can be drawn from
table 4.2 is that the discriminative model outperforms the generative model for all
sizes of the training set. This can be attributed to the superior maximum entropy
parameter estimation method compared to the maximum likelihood combined with
the naive Bayes assumption. Furthermore we see that this difference becomes
smaller when training on smaller training sets, suggesting that the NB might
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prove useful for small training sets. The good performance of the NB classifier on
small training sets was also observed by Nigam et al. (1999).

We perform an informal error analysis. Generally speaking errors are caused
by two phenomena: ambiguity and underspecification. Ambiguity is common to
natural language, and is in this setting mainly caused by words that have multiple
meanings (e.g. the verb “run” that can mean “operate” and “walk quickly”) :

“Mr. Stromach wants to resume a more influential role in running the
company.”

and

“[-..] insurance generally runs a poor second to any direct investment
you might make.”

Underspecification occurs when words in the test set (or other new documents)
are encountered that have not been seen in the training set. For example, in the
following sentence from the test set

“The dark forms moved like mourners on some nocturnal pilgrimage,
their dirge unsung for want of vocal chords.”

the words “mourners” “nocturnal”, “pilgrimage”; “dirge” and “unsung”’ have not

been observed in the training set (nor have their lemmas). In fact, 27.80% of the
sentences in the test set of the CoONLL 2008 shared task contain one or more words
of which the lemmas are not present in the training set.

4.5 Conclusions of this chapter

In this chapter we have discusses semantic role labeling. We have developed an
automatic method for this task that uses a number of features that capture the
word, syntactic properties of the word and the syntactic relationship between the
word and the predicate verb. We developed a discriminative and a generative
classifier and trained these on an annotated corpus. Upon evaluation we found that
the discriminative classifier outperforms the generative classifier, which can most
likely be attributed to the strong naive Bayes assumption made by the generative
classifier. We saw however that for smaller sizes of the training set the performance
of the generative model was comparable to that of the discriminative model.
Although the discriminative classifier achieves state-of-the-art performance, its
accuracy is not fully satisfying. This can be attributed to the ambiguity and
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sparseness of natural language, and to the fact that often only a limited number
of examples is present in the training set for a certain label.

Underspecification and ambiguity are fundamental problems to natural language
processing that need to be addressed by every automatic method. Modern machine
learning methods have already been a large step forwards compared to manually
constructed rules, but still have important limitations. In chapters 5, 6 and 7
we will address the problem of underspecification by augmenting the annotated
training set with large amounts of unlabeled data. Additionally the method
developed in chapter 6 provides an automatic method for the disambiguation of
ambiguous words.
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Outline part Il : Weakly supervised information extraction

Directed Bayesian networks can be used to solve some information extraction
tasks with a high accuracy. Examples of such tasks are part-of-speech tagging
and named entity recognition. For other tasks however this approach does not
result in a satisfactory solution. We have seen in the previous chapter, how the
models for word sense disambiguation and semantic role labeling achieve only
a limited accuracy. This is not only observed for Bayesian networks, but also
for other current machine learning methods. The fundamental problem is that
a supervised classifier is given by definition only a limited number of annotated
examples. Natural language is however very varied, and even a very large training
set will only contain a fraction of all possible words and phrases.

In part II of this thesis we develop a number of solutions to this problem. In
chapter 5 we focus on semi-supervised learning, which is traditionally proposed
as a solution to the underspecification problem. Semi-supervised learning uses a
data set of labeled and unlabeled examples when training information extraction
methods. We study semi-supervised methods based on generative Bayesian
networks with hidden variables. We will see how the parameter estimation methods
introduced in chapter 2 can easily be extended to the semi-supervised case.

We then propose a different approach to weakly supervised learning: first learn
statistics or structures from unlabeled data using an unsupervised model, and
in a second step use these statistics or structures as additional information in
a supervised model. In chapter 6 we introduce a novel unsupervised model,
the latent words language model. This model learns word similarities from a
large corpus of unlabeled texts which are used to reduce the sparseness problems
related to traditional n-gram models, resulting in a better model of previously
unseen texts. In chapter 7 we will show that these similarities can also be
successfully employed in a supervised model for information extraction, resulting in
improved performance of the models for word sense disambiguation and semantic
role labeling.

The work in this part of the thesis is described in the following articles:

- Koen Deschacht and Marie-Francine Moens.  Using the Latent Words
Language Model for Semi-Supervised Semantic Role Labeling. In proceedings
of the 2009 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2009), Singapore, August 7, 2010

- Koen Deschacht and Marie-Francine Moens. The latent words language
model. submitted to Computational Linguistics.

- Koen Deschacht and Marie-Francine Moens. Weakly supervised learning for
semantic role labeling. submitted to the Journal of Artificial Intelligence
Research.
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- Koen Deschacht and Marie-Francine Moens. The Latent Words Language
Model. In Proceedings of the 18th Annual Belgian-Dutch Conference on
Machine Learning (Benelearn 09), Tilburg, 2009.

Furthermore the work described in chapter 6 has resulted in the following patent
application:

- Koen Deschacht & Marie-Francine Moens.  Method for the automatic
determination of context dependent hidden word distributions. Submitted
to U.S. Patent and Trademark Office on November 18, 2009.






Chapter 5

Semi-supervised learning
with Bayesian models

“Data! Data! Data” he cried impatiently. “I can’t make bricks without clay.”
Sherlock Holmes in Doyle (1891)

In this chapter we introduce a first weakly supervised method: semi-supervised
learning, which uses both labeled and unlabeled data to train an information
extraction method. We introduce semi-supervised learning methods (section
5.1) and describe how generative Bayesian networks can easily be extended to
incorporate semi-supervised learning (section 5.2). We then apply a number of
variants of this semi-supervised learning method to semantic role labeling in section
5.3, and evaluate these methods in section 5.4. We compare our methods to related
research in section 5.5 and summarize our findings in section 5.6.

5.1 Introduction to semi-supervised learning

For most information extraction tasks a large set of examples is needed to learn an
accurate mapping from input s; to output L;, requiring a significant investment in
terms of time and manual labour. For information extraction from texts this often
boils down to manually annotating 10000’s of sentences with their correct labeling.
Researchers have suggested to alleviate this so-called annotation bottleneck with
semi-supervised learning methods that use a set of labeled examples together with

49
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a large set of unlabeled examples. A system that could learn an accurate classifier
with only a small set of labeled examples and a large set of unlabeled examples
(which can typically be collected at a small cost) would substantial reduce the cost
of developing IE systems.

A second motivating factor for weakly supervised texts is the inherent sparseness
of natural language texts. This is for example expressed in Zipf’s law (Zipf, 1949;
Estoup, 1916), which states that the number of times a word is encountered in
any given corpus is inversely proportional to its frequency rank. As a result, most
words in a corpus are encountered only a small number of times, and any statistical
model needs a way to handle previously unseen words when applied to a new text.
Another manifestation of this sparseness is the fact that a sentence of reasonable
length has typically never been previously encountered in a given corpus (Katz
and Fodor, 1963). A practical result of the sparseness of natural language is that
it limits the accuracy of machine learning methods on texts, which is for example
expressed in the low accuracy of part-of-speech tagging of previously unseen words
(Brants, 2000). Weakly supervised techniques that can analyze today’s massive
corpora stored on computers with modern day computing power, offer a method
to drastically scale up the number of training examples encountered by a given
machine learning method, improving its accuracy.

We consider semi-supervised learning methods a subset of the more general weakly
supervised learning methods. We define semi-supervised learning as

Definition 5.6 Semi-supervsed learning methods

Semi-supervised machine learning methods are methods that optimize a single
objective function which incorporates both labeled and unlabeled data.

The most important difference to weakly supervised learning is that a semi-
supervised method aims at optimizing a single objective function (e.g. this
chapter), while a weakly supervised method can use differernt objective functions
to train the parameters from labeled and unlabeled data (e.g. chapter 7).

5.1.1 Assumptions of semi-supervised methods

In this section we explain the assumptions behind most semi-supervised techniques.
At the core of most methods are two observations: the first observation is that
the space of input examples contains higher density regions (regions containing
examples that are likely to be observed) and lower density regions (regions
containing examples that are not likely to be observed). The second observation
is that low density regions often correlate with classification boundaries. The
central idea in semi-supervised learning is to combine these observations: use the
unlabeled data to improve the density estimate of the input data and use this
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Figure 5.1: Schematic figure illustrating how unlabeled data might improve a
supervised classifier. Grey dots are unlabeled data, white dots labeled data and
the dotted line the classification boundary.

improved density estimate together with the labeled data to learn an improved
classification boundary. Figure 5.1 provides a schematic illustration of this idea:
a supervised classifier with limited labeled data (fig. 5.1a) is combined with
unlabeled data (fig. 5.1b) to learn improved classification boundaries (fig. 5.1c).
In a different wording (Chapelle et al., 2006) this assumption can be stated as

Assumption 5.1 Semi-supervised smoothness assumption

If two data points s; and s; are close in a high-density region, then so should be
the corresponding outputs L; and L;.

In our work the data points s; and s; are words or sentences and the outputs
L; and L; are labels or labellings that annotate these words or sentences. This
assumption has been formulated differently, e.g. as the cluster assumption that
states that if two points are in the same cluster they are likely to be of the same
class (Seeger, 2002), as the low density separation assumption that states that the
decision boundary lies in low density regions of the input space (Chapelle and Zien,
2005), or as the manifold assumption that states that the high-dimensional data lie
roughly on a low-dimensional manifold (Belkin et al., 2004). Chapelle et al. (2006)
argue that these different formulations can all essentially be interpreted as special
cases of the more general smoothness assumption. We will refine this assumption
for the specific models used in this work, i.e. semi-supervised (this chapter) and
unsupervised (chapter 6) Bayesian models.

5.1.2 Semi-supervised methods

Work on semi-supervised methods in machine learning has been diverse and
abundant. Two popular semi-supervised learning methods are self-training and
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co-training. These methods can be classified as “meta”-methods, in the sense that
they can be employed with any machine learning method. Other methods extend a
particular machine learning method, such as transductive support vector machines
(Joachims, 1999), the null-category noise model for Gaussian processes (Lawrence
and Jordan, 2005), expectation regularization for exponential models (Mann and
McCallum, 2007) or generative models with hidden variables (Nigam et al., 2006).
We refer to Chapelle et al. (2006) and Zhu (2005) for elaborate literature reviews.

5.2 Semi-supervised learning with
generative models

5.2.1 Introduction

In chapter 2 we discussed how the maximum likelihood method is used to compute
the parameters of a Bayesian network given a set of labeled training examples.
This method can easily be extended to a semi-supervised approach that learns the
parameters of the model from a set of labeled and a set of unlabeled examples.
Popularized notably by the EM-algorithm (Dempster et al., 1977), this approach
has received a lot of attention and its theoretical properties are well understood
(Castelli and Cover, 1996; Cozman and Cohen, 2006). We first introduce this
method in detail and then apply it to two information extraction tasks.

Given a Bayesian network, a training set D4 = [(s1, L1)..., (Sa» La)] of a labeled
examples and a set Dy = [(Sat15 La+t1)--s (Satu, Latu)] of u unlabeled examples.
We call the labels of the labeled data D, observed labels, and the (unknown)
labels of the unlabeled data Dy hidden labels, and assume that the probability of
a label L; being observed or hidden is independent of the sample s; or of the value
of the label, i.e. we assume that a random selection of examples were manually
annotated.

We now learn the parameters 0, from these two collections of data by optimizing
the combined likelihood of the labeled and unlabeled examples:

a at+u
Esemi (Qsemi) = Z lOg P(Si7 Liwsemi) + Z lOg P(Si|956mi) (51)
i=1 i=a-+1

where the probability of the unlabeled sentences is computed as

P(Si|gsemi) = ZP(Si|Li7 esemi) . P(Li|gsemi)
L;
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Summarizing, we choose the parameters 0gep,; so that the model “explains” the
labeled examples, by being likely to generate the labellings and the sentences, and
“explains” the unlabeled examples by being likely to generate the sentences.

This approach builds on the semi-supervised smoothness assumption since it
assumes that every dense region in the input space can be modeled with a single
mixture component. The decision boundaries then lie naturally between these
mixture components. A formal treatment of this approach is given by Castelli
and Cover (1995), who show that if the Bayesian network is equivalent to the
network used to generate the data, and if the mixture components are identifiable
(Redner and Walker, 1984), the parameters 0y.,,; can be successfully learned from a
collection of labeled and unlabeled examples. Under these assumptions, increasing
the size of the unlabeled set increases the accuracy of the parameters, and only a
small number of labeled examples is needed to label the mixture components.

Cozman and Cohen (2006) however show that adding unlabeled data can also
decrease the performance of the learned model. This can occur if the model used for
classification is significantly different from the model that was used to generate the
data. They show that violating this correct model assumption will in general have
only small influence on a fully supervised model, but can potentially dramatically
reduce the performance of a semi-supervised model. Furthermore in this case
the maximum likelihood estimate will result in different parameters for the fully
supervised model than for the unsupervised model. The parameters of the semi-
supervised model will then be asymptotically a linear interpolation of these two
sets of parameters, and will be closer to the parameters of the supervised or to
the parameters of the unsupervised model depending on the ratio of labeled and
unlabeled examples.

Semi-supervised learning with generative models on real-world applications has
produced mixed results. Positive results have been reported on part-of-speech
tagging (Cutting et al., 1992), named entity recognition (Collins and Singer, 1999),
face orientation discrimination (Baluja, 1999), and word alignment (Callison-Burch
et al., 2004). Negative results were reported on image analysis (Shahshahani
and Landgrebe, 1994) and facial expression classification (Grandvalet and Bengio,
2004). Bruce (2001), and Nigam et al. (2000) report mixed results on respectively
word sense disambiguation and text classification.

5.2.2 Iterative parameter estimation

To select the variables Oge,; given the labeled and unlabeled examples (equation
5.1) we can use two approaches. A first approach is to select the set of parameters
for which the likelihood is the highest. This is usually performed with a hill-
climbing algorithm that changes the parameters in every iteration such that the
likelihood is guaranteed to increase, until a (local) maximum is reached. A popular
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example of this approach is the EM-algorithm (Dempster et al., 1977). A second
method is a Bayesian approach, where a prior distribution is defined for every
parameter. From these prior distributions, and the observed examples, the joint
posterior distribution for all parameters is computed. The final value of every
parameter is then set to the expected value of this parameter according to the
posterior distribution, e.g. to the weighted sum of all possible values for this
parameter, where the weights are given by the posterior distribution. A popular
example of this approach is Markov Chain Monte Carlo sampling (Metropolis and
Ulam, 1949). In this chapter we use the latter approach, the former approach will
be employed in chapter 6.

Given a set of parameters, a prior distribution for every parameter and a set
of examples, we use Markov Chain Monte Carlo (MCMC) sampling to generate
samples of these parameters according to the joint posterior distribution. Starting
from a random initialization L") of the parameters a Markov chain of samples
LW, .. L") is constructed, where the sample L(7) is selected according to a
proposal distribution ¢(L(7|L("=Y) depending on the previous sample L(7~1.
The proposal distribution is chosen such that the chain of samples has the combined
likelihood Lgemi as the equilibrium distribution. During the first number of
iterations (the burn-in period) the samples move from the random start position
to the region in the parameter space with high likelihood. After this period, the
samples move around the parameter space according to the posterior distribution.
Every number of iterations a sample is stored, and at the end of the MCMC
method, every parameter is averaged over all collected samples.

5.3 Semi-supervised semantic role labeling

In this section we apply two different MCMC methods to semi-supervised learning
for semantic role labeling. We first extend the generative model to semi-supervised
learning with Gibbs sampling in section 5.3.1, and propose a new generative model
better tailored to semi-supervised learning in section 5.3.2. We also extend the
discriminative model with Metropolis-Hastings sampling (section 5.3.3).

5.3.1 Gibbs sampling

We extend the generative model for SRL defined in figure 4.2 to the case of semi-
supervised learning. For all labeled sentences we set the predicate and semantic
role labels to their manually annotated values. The labels for unlabeled sentences
are initially set to a random value! and then iteratively updated: in sequence we

LA strategy where a classifier was trained on the labeled examples and used to estimate initial
values for the unlabeled examples did not result in significant better results.
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visit all labels of the unlabeled sentences, every time removing the current label
at that position, estimating the probability distribution of the label given the
values of all other roles and predicates, and setting a new label randomly selected
according to this distribution on this position.

The probability of a new role r;; on position 7 for verb w; with predicate Pred; is
given by

K k
P(rji|L(T_l),Ftrji) N c(rji—1,7ji, Predj) ' (rji,mjig1, Predy) XHC/(FtTjiﬂrji)

IS " (rji—1, Predy) c"(rji, Pred,) iy ()
(5.2)
where L(_TT;_U is all labellings in iteration 7—1, excluding label r;;, ¢/ (rj;, rji+1, Pred;)

is the number of times role 7;; occurs together with role rj; 1 and predicate Pred;
in L(T;U increased with a pseudo-count «, and ¢’(r;j;, Pred;) is the number of

times role r;; and predicate Pred; occur in L(f;_l ) increased with a pseudo-count
|R|ov where |R| is the number of distinct values of the role label. ¢” is the total
number of labels in the dataset increased with |P|a, where |P| is the number of
distinct values for the predicate label. All other symbols are defined analogously?.
The pseudo-counts « are the parameters of the prior distribution, a symmetrical
Dirichlet distribution. « is chosen to optimize the likelihood of the labels given an
unseen test set.

Tji

For a new predicate label Pred; the probability is given by

N /
(r=1) c(Predy) c(rji,rjis1, Pred;)
P(Predj|L—Predj7Ftrji) ~ 701/ X H C//(T“ PTed)
. jis J
1=1
i 7]

d (Ftrk;, Pred;)

K
X S
kl;[l c’(Pred;)

A new value is randomly selected for the role or predicate label and the respective
variable is assigned the new value. This iteration is performed many times, and
after the burn-in period the values of the role labellings are stored at regular
intervals and are used to compute the final set of parameters 0gep;.

?Note that all counts used here can be stored, only to be updated if the value of a role
or predicate changes, allowing for an efficient implementation that re-estimates thousands of
variables per second.
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Figure 5.2: Graphical representation of the generative model with multiple mixture
components m,;. k ranges over all sentences in the corpus and 7 over the n words
in the sentence.

5.3.2 Gibbs sampling with a multiple-mixture model

We have seen in the previous section how semi-supervised learning is based on
the “correct-model” assumption. Although in practice this assumption is almost
always violated, this sometimes does and sometimes doesn’t decrease performance
of semi-supervised methods. If a decrease in performance is observed in semi-
supervised models, it can be beneficial to explore a different model that matches
more closely the statistics of the data (Cozman et al., 2003). One aspect of the
proposed model for semantic role labeling that seems worrisome is the high number
of NULL labels. In the training set, more than 91% of the role labels are marked
as NULL. This does not seem to be a good model of natural language, since it
tries to model almost all words with a single label. Nigam et al. (2006) have noted
that in the presence of a mismatch between labels and true mixture components,
it can be advantageous to define a number of hidden mixture components, with
a many-to-many mapping between mixture components and role labels. With
this setup, we see a semantic role as a label for a cluster of natural language
phenomena (e.g. prepositional phrases expressing a location). This very general
cluster however likely consists of a number of sets of sentence constituents that
are semantically and syntactic related, i.e. a number of sub-clusters. The mixture
components can then be used to represented different sub-clusters, leading to a
better representation of the different semantic roles. We expect that this will be
especially helpful to obtain a more accurate model for the NULL label.
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5.3.2.1 Description of the model

The multiple mixture Bayesian model is defined as in figure 5.2. For a verb w,
at position n in sentence s, of N words we introduce a vector of N mixture
components m; = [m;1, ..., m;n|. The mixture components are never observed in
the training data, and are learned iteratively from the labeled and unlabeled data.
We set the number of unique mixture components to 40. Although we assume that,
after training, a single mixture component will map to a single role, this constraint
is never enforced during sampling. We will see in section 5.4 how this influences
our results. We estimate the mixture components from the joint likelihood of the
labels and observed features for the labeled examples and of the likelihood of the
observed features for the unlabeled examples

a at+u
EsemiMM (esemi) = Z lOg P(Si7 Li|esemi) + Z lOg P(Si|956mi)
k=1 1=a-+1

where the joint probability of a sentence and its labels is computed as

P(sj,Ljl0semi) = Y [P(55, Ljl0semis mji) - P(01i[0semni)]

my;

and the probability of an unlabeled sentence is computed as

P(Sjwsemi) = Z [P(Sjlesemh mji) : P(mjiwsemi)]

mg;

Note that we do not estimate the role labels of the unlabeled examples, since
these do not influence the likelihood of the observed features, given the mixture
components.

5.3.2.2 Training

We use Gibbs sampling to estimate the parameters of this model: we first set all
mixture components to a random value and then sequentially visit every mixture
component mj;, remove the current value for that component, and compute a
probability distribution for the value of this mixture component given the features,
the labels and all other mixture components. The probability distribution of a
mixture component in an unlabeled sentence is given by
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< (myimy,myipr, mys) (mgi, i1, myy)
’ (mji—1,m;j;) " (mygi, mj;)

P(my; MY, ” Ftryi, rji) ~

C m]mrjz > H Ftrjz’mﬂ)
mﬂ mﬂ

where Mﬁt;j} is the collection of mixture components of all labellings in iteration

7 — 1, excluding component mj;. Other symbols in this formula are analogous

to symbols used in section 5.3.1. The distribution of a new value of mixture

component m;; of a semantic role for an unlabeled sentence is

' (mji—1, mjig1,myj)  (myi, mjip1, myj) ﬁ Ftr]z’mﬂ)
" (mji-1,mj;) " (mji, mj;) " (mji)

P(m;; M7, ") Ftry)  ~

We thus see that for an unlabeled sentence, the mixture components are only
dependent on the other mixture components and the features, not on the
(unknown) labeling.

5.3.2.3 Inference
The joint probability of a labeling L; = (Pred;,r;) and a sentence w is given by

P(Ljaw) - Z P(W7 Lj|mji7 osemi) : P(mji|esemi)

my;

The mixture components are thus marginalized, i.e. summed out. During
classification we find the predicate label and roles that maximizes this probability,
using a beam search.

5.3.3 Metropolis-Hastings sampling

We have seen in chapter 4 how the discriminative model significantly outperforms
the generative model, and we would also like to expand this model to semi-
supervised learning. This is however not as straightforward as for the generative
model, since in principle unlabeled examples do not influence the conditional
likelihood of the labels in a discriminative model (Chapelle et al., 2006). However,
we can employ a more general MCMC sampling method, Metropolis-Hastings
sampling (Hastings, 1970; Bishop, 2006). In Metropolis-Hastings sampling the
sample L("t1 is selected conditioned on the previous sample L(") according to
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some proposal distribution q(L(T+1) |L(T)). The sample is then accepted or rejected
with a probability given by

’

G(L(TH),L(")) — min (17 Lsemi(

’
Esemi

S, L(TH)) . q(L(T)|L(T+1))
(S,L) - q(L+VLM)

Here L,,,.(S,L(M) is the likelihood Leemi(S,L(™) of the sentences S and
labellings L(") multiplied with some value §, which can be any non-zero value,
as long as it remains constant during the sampling process. We choose § =
ﬁ (i.e. the inverse of the likelihood of the sentences) which is a constant
(although unknown) value and see that £, .(S,L()) = Ly (L()|S). This
is the conditional likelihood of the labellings given the sentences, a value
that can be computed with the discriminative model. We set the proposal

distribution to g(LU+D|L(M) = PLE+Y(9{") 'S where the parameters 67

semi’? semi

are learned from the previous labeling L(") and the sentences S using maximum
entropy with generalized iterative scaling. Similarly we define ¢(L(7|L("+1) =

P(L(T)|9§;ﬁ), ), where the parameters 92:7:1) are learned from the labeling
L+,

Summarizing, the acceptance function G(L("+1) L(")) combines the traditional
£Semi(L(T+1) \S)
Laemi(L]S)
towards labellings that maximize the conditional likelihood, exploiting known good
PLO6T)S)
PLCD10) S)
“unlikely” given the current labeling, thereby exploring new areas in the sample
space. Also here, after the burn-in period a number of samples are stored which

are combined in the final model.

exploit /explore trade-off. The factor moves the sampling method

areas in the sample space, while encourages labellings that are

5.4 Evaluation of semi-supervised SRL

We evaluate the sampling methods using 20% of the examples of the CoNLL 2008
training set as labeled examples, and different sizes of the training set as unlabeled
examples, ranging from 0% (i.e. a fully supervised classifier) to 80%. A random
labeling is created for the unlabeled examples, which is then iteratively updated
during the Gibbs or Metroplis-Hastings sampling method. After an initialization
period (i.e. the burn-in period) we collect samples every 20th iteration. The
collected samples are used to train a final model, which is then evaluated on the
CoNLL 2008 test corpus. We report the Fl-measure of the different methods in
table 5.1. For the Gibbs sampling method, we see that adding unlabeled examples
degrades performance, from 54.42% for a classifier that is trained on 20% of all
labeled examples and no unlabeled examples, to 43.75% for a classifier that was
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20%L+0%U | 20%L+20%U | 20%L+40%U | 20%L+60%U | 20%L+80%U
Gibbs 54.42% 48.61% 47.43% 45.86% 43.75%
Gibbs MM 53.55% 52.39% 49.11% 51.70% 50.91%
M-H 67.23% 62.12% 59.40% 60.68% 59.19%

Table 5.1: Performance (in Fl-measure) of the generative model trained with
Gibbs sampling, the generative multiple-mixtures model trained with Gibbs
sampling and the discriminative model trained with Metropolis-Hastings sampling.
The models use 20% labeled (L) and various fractions of unlabeled data (U) from
the CoNLL training set.

trained with 20% labeled and 80% unlabeled data. We must thus conclude that for
the generative model, the violation of the correct-model assumption is too severe,
and adding unlabeled data makes the parameters move away from the optimal
parameters for classification, resulting in a dramatically reduced performance.

We have proposed the multiple mixtures model as a model that has more flexibility
to model natural language. We see that for 20% labeled data and no unlabeled
data, the multiple mixtures model performs slightly worse than the standard
generative model. The reason for this is that also for the labeled corpus we need
to estimate the mixture components, which might results in ambiguity between
some mixture components and labels. We see however that the performance of the
multiple-mixture components model is more stable when adding more unlabeled
examples, reducing only by less than 3% when using 4 times the number of
unlabeled examples compared to the number of labeled examples. These results
indicate that the additional degrees of freedom provided by the multiple mixture
components allow the model to model natural language more closely, making it
better suited for semi-supervised learning. This can also be understood from the
semi-supervised smoothness assumption which suggests that if the dense regions
can be modeled more accurately, labels can be propagated more reliably to
unlabeled examples.

Table 5.2 gives the mapping from role mixtures to role labels that was
automatically learned during Gibbs sampling (using 20% labeled and no unlabeled
examples). We see that some role mixtures have a clear mapping to a single role
label, such as mixture 0 to NULL role, mixture 1 to role A1 and mixture 3 to
AQ. Other mixtures, such as mixture 5 and mixture 14 are more ambiguous, and
map to multiple role labels, which is a likely cause of errors. We also see that
many roles map to the NULL role, confirming our hypothesis that this label in
fact models different types of sentence constructs, which are better modeled with
a larger number of mixtures.

Finally we evaluate the Metropolis-Hastings sampling algorithm. We start from
the discriminative model, which significantly outperforms the generative model
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AM- | AM- | AM- | AM- | AM- | AM-

A0 Al A2 1 apv| pis | Loc | MNr| MoD| Tmp | NULE | total
0 | 062 138 003 000 000 003 006 003 010 9680 | 43146
1 | 125 8620 015 019 001 007 003 008 049 1093 | 19544
2 | 038 058 008 005 000 000 003 004 004 97.96 | 62493
3 | 9274 116 089 095 012 000 041 008 012 326 | 6548
4 | 012 9377 031 007 002 007 013 007 002 481 | 27665
5 | 019 4554 020  0.06 0.05 004 001 007 002 5374 | 56295
6 | 005 009 035 006 004 000 000 000 026 98.86 | 34147
7 | 012 005 001 001 001 001 000 001 006 99.35 | 83408
8 | 077 009 9728 015 017 027 0.10 001 024 072 | 14263
9 | 096 070 009 000 0.09 006 001 022 019 97.41 | 21112
10 | 079 137 012 020 021 016 0.03 063 86.80 9.36 | 11082
11 | 96.09 1.03 018 000 002 005 000 001 002 219 | 49295
12 | 004 551 08 073 031 025 014 062 044 9040 | 9455
13 | 018 452  1.03 1291 0.08 0.01 16.13 41.89 022 22.21 | 11609
14 | 2469 6473 055 017 017 008 003 012 019 872 | 13029
15 | 013 003 007 000 002 002 004 002 008 9890 | 82504
16 | 2.45 343 287 015 0.00 040 035 059 044 88.82 | 5009
17 | 1062 078 471 015 0.02 16.88 123 2.66 027 61.24 | 3661
18 | 116 056 006 020 014 005 0.09 022 037 9624 | 14655
19 | 3.06 079 6958 055 018 0.09 028 0.05 041 24.03 | 5803

Table 5.2: For the 20 most frequent role mixtures (first column) and the 10 most
frequent role labels (first row) in the labeled training set, this table lists the number
of assignments of role mixtures to role labels after the Gibbs sampling (using 20% of
the labeled training data and no unlabeled data), numbers are given in percentages
of total occurrences of the role mixture (last column). For the definition of the
various roles, see table 4.1 on page 37.

when using only labeled data. As we add more unlabeled data, we see that also
here, the performance of the method decreases, although the decrease (2.93%) is
smaller then for the generative model.

5.5 Related work

Concerning research on semi-supervised methods for natural language processing
we mention the application of self-learning on word sense disambiguation
(Yarowsky, 1995) and on syntactic sentence parsing (McClosky et al., 2006), the
use of co-training for syntactic parsing (Sarkar, 2001) and part-of-speech tagging
(Clark et al., 2003), semi-supervised discriminative methods for detecting and
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labeling gene and protein names (Jiao et al., 2006) and for named entity recognition
and part-of-speech tagging (Mann and McCallum, 2007) and transductive support
vector machines for mapping sentences onto a formal meaning representation (Kate
and Mooney, 2007) and performing dependency parsing (Wang et al., 2008). We
refer the interested reader to (Abney, 2007) for more references on semi-supervised
learning for natural language processing. Although most of this research shows
that semi-supervised learning for natural language processing improves results,
some researchers have also pointed to cases where adding unlabeled examples
deteriorated performance. Nigam et al. (2000) find that a probabilistic model that
does not capture dependencies between features or that does not approximate
the correct number of clusters in the data can result in performance degradation
for semi-supervised methods. Charniak (1997) and Pierce and Cardie (2001) find
that respectively self-training for sentence parsing and co-training for noun phrase
bracketing can lead to increased errors in the classification, most likely caused by
incorporating incorrectly labeled examples in the training phase.

In recent years semi-supervised learning methods have been applied to semantic
role labeling. He and Gildea (2006) use a self-learning scheme where a maximum
entropy classifier is trained using a small set of labeled examples. This classifier is
then used to create semantic role labellings for a large set of unlabeled sentences,
of which the most confident are added to the labeled training set. This process is
repeated for a number of iterations. Contrary to expectations this did not improve
the performance of the classifier. Also a co-training scheme where two classifiers
were trained independently and used iteratively to label unlabeled sentences failed
to improve performance.

Swier and Stevenson (2004) report on a successful self-learning method to learn
VerbNet semantic roles (Kipper et al., 2000) where the probabilistic classifier is
augmented with a set of linguistic restrictions to guide the assignment of semantic
roles to sentence constituents, improving the performance of a baseline method
from a 63.7% accuracy to a 87.2% accuracy on a labeled section of the British
National Corpus for 54 target verbs. The method was only tested on a small subset
of all verbs in VerbNet and to the best of our knowledge has not been reproduced on
the much larger PropBank dataset. Furthermore we can see linguistic constraints
as an alternative to labeled examples, adding extra human knowledge to the
classifier.

Finally we cite Fiirstenau and Lapata (2009) who compute a syntactic and
semantic distance between sentence constituents to automatically expand a small
training set with the most similar sentences in a large set of unlabeled examples.
The similarity metric combines a syntactic distance (using the dependency tree of
the sentence) and a semantic distance metric (using the Brown clustering algorithm
(Brown et al., 1992)). A supervised classifier is then trained on this expanded set.
This method was successfully tested on the FrameNet corpus, where the largest
relative improvements were achieved for small initial sets of labeled examples. We
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will discuss this method more at length in chapter 7, where we will compare it
with a method that combines structures learned by an unsupervised model.

5.6 Conclusions of this chapter

In this chapter we have introduced semi-supervised learning as a solution to the
underspecification problem and discussed how semi-supervised learning is based on
the semi-supervised smoothness assumption. We have then extended the Bayesian
networks with hidden variables for the unlabeled examples and shown how the
parameters can be estimated with Markov Chain Monte Carlo sampling, which we
applied on the generative and discriminative SRL models. The parameters of the
generative SRL model were estimated with Gibbs sampling and the parameters
of the discriminative model with Metropolis-Hastings sampling. We observed how
the performance of these semi-supervised classifiers deteriorated when using more
unlabeled data, which is caused by a violation of the correct model assumption. A
multiple-mixtures model was then proposed as an improvement to the generative
model, allowing more degrees of freedom when modeling natural language. We saw
how the performance of this model was more robust when adding more unlabeled
data.

From these experiments we regrettably have to conclude that Bayesian networks
with hidden variables are not a suitable paradigm for semi-supervised learning of
information extraction methods. This is in line with results indicating that semi-
supervised learning, although potentially usefull for simple information extraction
tasks (e.g. part-of-speech tagging (Cutting et al., 1992) and named entity
recognition (Collins and Singer, 1999)), does not help for more complex tasks (e.g.
noun phrase chunking (Pierce and Cardie, 2001) and syntactic sentence parsing
(Charniak, 1997)). In the next chapter we turn to a different approach to weakly
supervised learning: we first train an unsupervised model on unlabeled data, and
use, in a second step, the statistics learned by this model in supervised classifier
trained on annotated data. We will see how this approach depends only slightly
on the correct model assumption, and does lead to improved results when used
with large amounts of unlabeled data.






Chapter 6

The Latent Words Language
Model

“When ideas fail, words come in very handy77
Johann Wolfgang von Goethe

In this section we discuss a novel unsupervised model of natural language, the
latent words language model. This model learns syntactically and semantically
similar words from a large corpus of unlabeled texts to improve the predictive
quality of an n-gram language model on unseen texts. We will start by describing
state-of-the-art n-gram language models and the problems encountered with these
models (section 6.1) and introduce the LWLM as a possible solution to these
problems (section 6.2). We evaluate the predictive quality of this model on unseen
texts in section 6.3 and the learned word similarities in section 6.4. We discuss
related work in section 6.5 and conclude this chapter in section 6.6.

Although this chapter might seem to be deviating from the topic of this thesis, we
ask the reader for some patience, since we will show at the end of this chapter and
in the next chapter that the structures learned in this language model are very
useful to improve the performance of information extraction methods.

65
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6.1 N-gram language models

Language models are models that assign a probability to every sequence of words
w = [w1...wy], which reflects the probability that this sequence will be generated
by a human user of natural language. Sentences that are likely to be uttered
should thus be assigned a higher probability and sentences that are unlikely to
be uttered a lower probability. These models have been used in a wide range of
applications, such as speech recognition (Jelinek et al., 1975), machine translation
(Brown et al., 1990), spelling correction (Kemighan et al., 1990) and handwriting
recognition (Srihari and Baltus, 1992). In this section we introduce the most
successful class of language models, n-gram language models.

6.1.1 Introduction

Although any probabilistic method can be used for language modeling, the most
successful language models are n-gram models. These models estimate the
probability p(w) of the sequence of words w = [wy...wx] as

N
p(w) = [ [ Plwilwi=},1)
i=1

where W;:;lz-u = [W;—pt1...w;—1] is the sequence of n — 1 words that occur before
w;, i.e. the probability of w; is computed using only the n—1 previous words. The
value of n is usually set to a small number (e.g. 3). These models are trained on
a large unlabeled corpus Wi qin = [w1...wy,]. Let us first consider the maximum
likelihood estimate of the probability P(w;|w._) ), given by

i— C(Wl:— 1)
Py (wilwiZ) ) = c(wif?*)
i—n—+1

where c(w§7n+1) is the number of times the sequence of words WLRH occurs in
Wirain and c(wijﬁl) is the number of times the sequence W::;lﬁl OCCUTS N Wipqin-
This is a proper probability distribution since Y°,, c(wi_,, ;) = c(wiZl,y), but it
will lead to an ill-defined model, since it assigns zero probability to many sequences.
The reason for this is that potentially |V|™ n-grams can occur in a given corpus,
where |V| is the size of the vocabulary (usually between 10* and 10% words). An
unobserved test corpus is thus likely to contain many sequences that have never
been observed. Figure 6.1 shows that the probability of an n-gram in a test
corpus being observed in the training corpus becomes exponentially smaller with
increasing n.

Methods to overcome this problem generally combine the probability of wi_, with
lower order probabilities, i.e. the probability of observing w;_, ., the probability
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01

0.0

Figure 6.1: Probability p that an n-gram of length n in the test section has been
observed in the training section, both from the Reuters corpus (section 6.3).

of observing wi_ 12, -~ and the probability of observing w;. For an extensive
overview of these methods we refer to Chen and Goodman (1996) and Goodman
(2001). In the following sections we review some methods relevant to the research
at hand: a simple interpolation model (section 6.1.2), the state-of-the-art Kneser-
Ney smoothing method (section 6.1.3) and the novel relative discount Kneser-Ney
smoothing method (section 6.1.4).

6.1.2 Interpolation

A first method that is discussed is a simple interpolation model. The probability
of the word w; given the previous words W;:}l 11 is computed by the interpolation

model as
Pryr(wilwiZ) ) = )\"CT + (1= An) Prnve (wilwiZ) ) (6.1)

where )\, is a smoothing factor 0 < A\, < 1. This is a recursive definition, in
which the last term is the unigram probability Pryr(w;) = C(Js’:), i.e. the relative
frequency of the word wj; in the training corpus. This method combines specific,
but sparse and thus possibly unreliable, higher order n-grams with less specific,
but more reliable, lower order n-grams. The interpolation factors A, are constants
selected to optimize the predictive quality of this model (as measured by the

likelihood of a held-out corpus, see section 6.3).

6.1.3 Kneser-Ney smoothing

One problem with simple interpolation is that not all frequency counts should be
considered equally reliable. Consider the sequence of words “Garry Tucker said” in
the 5M words Reuters corpus (section 6.3). This phrase is only observed this one
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Figure 6.2: Comparison of the real frequency in a 50/ Reuters corpus versus the
expected frequency based on a 5M corpus.

time in the entire corpus. The maximum likelihood estimate (i.e. #) is however
most likely a serious overestimation, since most likely we will not observe this
phrase 10 times in a corpus of 50M words. Figure 6.2a shows the relation between
the expected count (based on a 5M corpus) and the observed count (based on a
disjunct 50M corpus in the same domain). We see that on average, the expected
count is larger than the observed count. This difference can be quantified in
absolute terms (i.e. the value obtained by subtracting the average predicted counts
from the average measured counts, figure 6.2b) and in relative terms (i.e. the
value obtained by dividing the average predicted counts by the average measured
counts, figure 6.2c). We see how both differences changes with the frequency: low
frequencies have a small absolute difference but a large relative difference, while
larger frequencies have a bigger absolute difference but smaller relative difference.

These observations suggest that a more accurate distribution can be obtained by
discounting ¢(w!_, ;) with some factor. This is incorporated in the absolute
discounted Kneser-Ney smoothing method, proposed by Ney et al. (1994) and
adapted by Chen and Goodman (1996)

i e(Wi_pni1) = dnlc(Wi_p11)) i i
Pakn(wi|wifql1+1) = 1 i—1 +1 + 6(Wi7711+1)Pak"(wi|wi7711+2)
C(Wi—n+1)

(6.2)

where d,,(c(w!~} ;) is the discount factor for count c(w/_, ) and 6(w._, ) is
an interpolation factor that combines the n-gram distribution with the lower order
n — l-gram distribution and is defined by

S(wiTl )y=1- Z C(Wé—n-l-l) - dn(c(wé—n-l-l)) (6.3)

i—n+1 1
o o (Wi pi1)
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A common choice (Chen and Goodman, 1996) for the discount factor is

0 ife(wi_)=0
dn ife(wi_,) =1
dna  ifc(wi ) =2
dps4+ otherwise

where d,,1, d,2 and d,34 are constants optimized on a held-out corpus. Unique
to Kneser-Ney smoothing is that the probabilities of bigrams and unigrams are
computed in a different manner. The probability distribution of bigrams is given
by

7T(u}i_1U1i) — dQ(W(wi—lwi))

2w, T(Wio1wy)

Poion (wiw;—1) = + (wi—1) Pakn (wi) (6.4)

where 7(w;—1w;) = [{v|c(vw;—1w;) > 0}| is the number of different words v such
that the sequence vw;_jw; occurs at least once in the training set. Similarly the
unigram probability is computed as

m(w;)

Plw) = s~ wy)

(6.5)

where 7(w;) = |[{v]c(vw;) > 0}] is the number of different words v such that the
sequence vw; at least once. These special computations of the bigram and unigram
distributions are motivated by the observation that some words (e.g. “Francisco”)
occur frequently in a corpus, but occur only in very specific contexts (e.g. “San
Francisco”), and that counting the number of unique contexts such a word occurs
in gives a better estimate of the true probability of observing this word in a new
context.

This smoothing method combines a number of ideas: (1) the maximum likelihood
estimate is closer to the true distribution if the raw counts are discounted with an
absolute factor, (2) lower order counts are better estimated with formula’s 6.4 and
6.5 to match the marginals of the higher-order distributions to the marginals of the
training data, and (3) depending on the structure of the higher order distribution,
more or less weight should be given to this distribution. The motivation for (1) was
given previously and for the motivation for (2) we refer to (Chen and Goodman,
1996). Property (3) however is an interesting quality that we will discuss a bit
more in depth.

The interpolation factor cS(wz::TlI +1), given by equation 6.3, is not a static factor,
but a dynamic factor that depends on the shape of the higher order distribution.



70 THE LATENT WORDS LANGUAGE MODEL

Assume for example the following definition for the discount factor

0 if c(w£7n+1)
0.9 ifc(Wi_,i1)
1.5 ifc(wﬁ_n_H)
2.1 otherwise

0
i 1
dn(c(wi—n-i-l ) = 9

Take that we observe the 3-gram “Garry Tucker said”, and want to compute the
probability distribution of the next word. “Garry Tucker said” occurs only once in
the training corpus and the interpolation factor 6("Garry Tucker said") is thus
1— 1222 = 0.9. A high weight is thus given to the lower order probability
distributions, since the higher order distribution was sparse and probably not

very reliable.

Now take that we observe the 3-gram “the first quarter”, which occurs 5493 times
in the corpus, and occurs frequently with the same 4-grams e.g. “the first quarter
of” (2643 times), “the first quarter , ” (708 times) and “the first quarter and” (187
times). For this training corpus, we find that 6("the first quarter") = 0.05, giving
a high weight tot the higher order distribution since it was observed frequently
and is probably reliable.

Kneser-Ney smoothing is not the only smoothing method to incorporate this
dynamic interpolation (e.g. Jelinek and Mercer (1980) and Bell et al. (1990)),
but in our opinion it is the only method to combine this in an effective way
with the discount of individual sequences. In an extensive comparison of a
large number of smoothing techniques, Chen and Goodman (1996) found that
interpolated Kneser-Ney smoothing consistently outperforms all other state-of-the-
art smoothing methods.

6.1.4 Relative discounted Kneser-Ney smoothing

One disadvantage of interpolated Kneser-Ney smoothing is that it is only defined
for discrete counts. In the following sections we will use it in the EM-algorithm,
where we need to discount non-discrete, probabilistic counts. It is also unclear
how to count the number of unique contexts of a particular word in this setting.
For these reasons we propose a novel modification of the Kneser-Ney smoothing
method, termed relative discounted Kneser-Ney smoothing (RDKN). RDKN uses
a relative discount factor d,,(¢(w!_, ,,)) between 0 and 1. The smoothing method
Prjon (wi|wiZ ) is then defined by
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c(Wi_ny1) X dnlc(Wi_pi1)) i i
= ) = +5(Wi—711+1)Prkn(wi|Wi—vlz+2)

Prgen (W |W§:i+1) = C(W
i—n—+1

(6.6)

where the recursion ends with the unigram probability P.g, (w;) = C(—}\U,) As before
the interpolation factor §(wi_} ;) is defined as

S(wihy) =1- 3 ) X ) (67
w; 1—n—+1

We define d, (c(w!_,_,)) by dividing the space of counts ¢(w!_, ) into S equally
populated intervals with borders ¢1, ... , cs—1. Every interval is assigned a fixed
discount factor ds, defining the function d,,(c(w!_,,,)) as

dn ife(Wi_,p1) <@

i dna ifcr <c(wi_ . ;) <co
dn(c(wi—n-i-l)) = i

dps ifes <c(wi_,.,)

The values 0 < d,,; <1 are optimized on a held-out corpus.

This method is different to interpolated Kneser-Ney smoothing in two aspects. The
first difference is that we use a relative discount factor and not an absolute discount
factor. The second difference is that we do not use special counts for bigrams and
unigram distributions, but use the relative discounted counts as given by equation
6.6 for the bigram distribution and use the maximum likelihood estimate for the
unigram distribution.

This formulation can be used conveniently with soft counts, and in fact we see in
section 6.3 that it also outperforms Kneser-Ney smoothing when used with discrete
counts.

6.2 The latent words language model

As discussed in the previous section, the performance of language models is limited
by the sparse nature of n-grams. Although smoothing methods partially alleviate
this problem, they do not fully solve it. A major weakness of these models is that
they treat every word in the text as a unique symbol, independent of all other
symbols. This ignores the fact that many words are synonyms or have related
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meanings, and that natural language typically uses constructions where certain
classes of words (e.g. part-of-speech classes) always occur on the same position
(e.g. “determiner noun verb”). Let us assume for example that we observe the
sequence “let’s meet on Tuesday” in the training corpus. If the model would know
that “Tuesday” is similar to “Monday”, “Wednesday” etc., we could predict that

the sequences “let’s meet on Monday”, “let’s meet on Wednesday”, etc. can also be
observed in the test corpus.

In this section we build a model that aims at exactly this goal: learning words that
are synonyms or that have related meanings, and use these in an improved model
for the prediction of sequences in the test corpus. We first describe the model in
section 6.2.1. Although the definition of the model is simple, standard algorithms
can not be employed due to their large time complexity. We discuss novel
algorithms for inference (section 6.2.2), training (section 6.2.3) and predicting
the probability of unseen texts (section 6.2.4). Finally we discuss some additional
techniques used in the implementation in section 6.2.5.

6.2.1 Description of the model

The latent words language model (LWLM) introduces for a text w = [wy...wy] of
length N for every observed word w; at position 7 a hidden (or latent) word h;
with an unknown value from the vocabulary V. This model is a generative model
for natural language that, for a given vocabulary V', length N, counts C' and
smoothing parameters 7, generates a sequence of hidden symbols h = [h1...hy]
and a sequence of observed words w = [w;...wy]. The generative process is defined
as follows:

For i from 1 to N do

Sample a hidden word h; from the distribution P(h;/h!"%, C,~)

1—n)

Sample an observed word w; from the distribution P(w;|h;, C,7)

Here we implicitly understand that for the first words in the sequence, i.e. i < n,
we only use the available context, e.g. if i = 1 then P(h;|h’=}, C,~) = P(hi|C, 7).

1—n?

This model contains two probability distributions.  The first distribution,
P(h;|hi=! C,~), models the dependency between the current hidden word and

the previous hidden words, and is modeled as a categorical distribution, where the
raw counts are smoothed with relative discounted Kneser-Ney smoothing (RDKN).

The second distribution P(w;|h;, C,~) models the dependency of the observed
word on the hidden word and is also a categorical distribution, smoothed with a
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Figure 6.3: BN of the latent words language model. The words w; (gray nodes)
are observed and the hidden words h (white nodes) are hidden variables.

variant of RDKN
C(’U}i7 hz) X d(c(wi7 hz))

P(wz|hluc7’7) = C(h)

(6.8)

We will use the term “smoothing parameters”, with symbol v, to denote the
collection of discount factors used in these two smoothing methods.

This model can also be expressed as a Bayesian network, shown in figure 6.3. From
this figure we see that the structure of the model is equivalent to the structure
of a hidden Markov model (HMM) (Baum et al., 1970; Baker, 1975). However,
the two models have important differences: where the latent variables in a 2 are
selected from a small set of categories, we model the latent variables as unseen
words that can be selected from the entire vocabulary. Furthermore we use a novel
smoothing method for the context model (i.e. RDKN), and algorithms for HMM’s
typically assume that the hidden variables are only dependent on the previous
variable (i.e. n = 2), where we will use much longer dependencies (i.e. n > 5),
which has important consequences for the algorithms employed for training and
inference.

One interpretation of this model states that a person who wishes to express a
certain message, can choose a large number of ways of expressing this message.
However, when the message is uttered (or written down), this person has to chose
one specific sequence of words, although many words in this sequence could be
replaced with a synonym or related word while keeping the meaning of the message
intact. The hidden word h; can be seen to represent these possible alternative
words at a certain position 7 in this sequence. The collection of possible alternatives
is modeled as a probability distribution P(h;|w) over all words in the vocabulary.

This interpretation is of course very loosely defined, and probably also a bit over-
ambitious. We will however see that by training this model on a large collection
of unlabeled texts, we can learn word similarities with a high accuracy. These
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word similarities can then be used successfully to improve language models and
information extraction methods.

We develop three methods for this model: inference, where we estimate the
expected value of the hidden variables given the observed words, training, where
we estimate the parameters of the model given a large training text, and density
estimation, where we predict the probability of unseen texts.

6.2.2 Inference

Given a sequence of words wies = [wy...wy, | and the parameters C' and v, we
want to find the probability distribution P(h;|wiest, C,y) of the hidden word h;
on position .

The forward-backward algorithm Traditionally in HMM’s this probability is
computed with the forward-backward (i.e. Baum-Welch) algorithm, which
computes this probability as

a(hi_, . 2)B(hi_.o)
Plhlwiest, Co7) = 3 | ——5n = mt=its (6.9)
hi :L+2 test )

where a(h!_, ,) = P(wi,h!_ ., C,v) is the joint probability of observing
wi together with the sequence hi_, ,,, and B(hi_,,,) = P(w}y4|hi_ 5, C.7)

represents the conditional probability of observing wﬁ;‘l given the sequence h!_ e
Both values are defined recursively as

a(h§7n+2) = P(w;|h;, C,7) Z (hi ib-‘rl) (i |h7, n+1ﬂca7) (6.10)

Ri—nt1

and

z n+2 Z ﬂ h2+}1+3 wi+1|hi+1aOaV)P(hi+1|h§—n+2Oa’7) (611)

1+1

The values a(hi_, | ,) can been seen as messages that travel from the start of the
sequence to the end, while the values S(h!_, ,,) can be seen as messages that
travel from the end of the sequence to the start. As the forward and backward
messages travel through the chain, at every position in the sequence we need to
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store the values of a(hi_, ,,) and B(h!_, ) for every possible sequence h!_, .
requiring the storage of 2 x |H|"~! values, where |H| is the number of hidden
states. To compute the next a(h/"} . ;) (or B(h{Z n+1))7 we need to multiply and
sum these values for every possible hidden state in the next position, requiring
a computational cost of O(|H|™). This needs to be performed for every position,
resulting in a total complexity of O(|H|™ x N,). For more information on the

forward-backward algorithm we refer to (Bishop, 2006).

The computational cost of the forward-backward algorithm for standard HMM’s is
low because most implementations of hidden Markov models use only the previous
context, i.e. n =2, and use a small number of hidden states, i.e. 10° < |H| < 102.
In our model the number of the hidden variables is the size of the vocabulary,
which is 10* < |V| < 105 for any reasonable sized corpus, and we want to use
a much larger context, e.g. n = 5. It is thus clear that using the traditional
forward-backward algorithm is not an option here.

Forward-forward beam search We develop an approximate version of the
forward-backward algorithm with lower time complexity, termed the forward-
forward beam search. We introduce a function trim(a(hj_, ,,)) defined by

trim(a(h_, ,)) = {a(hznﬁ) v mnk.(a(hgfnw)) =0

0 otherwise
where the rank rank(a(hi_, ,,)) is found by sorting all possible sequences h!_, ,
in descending order according to the value of a(hj_, ,,). The trim function thus
removes for a certain position all values that are not among the b most likely values.
We then define the approximate o/(h}_, ,,)*

o (b, 5) = oipp1 Plwilhi) > trim(a’ (b7}, ))P(hilhi=) ) (6.12)

1 n+1

this value is an approximation of a(h!_, ,,) that takes into account only the b

most likely values of o/(h{Z} ). This value will be closer to a(hi_, ,) with

increasing b, and will be equal if b > |H|"~1. The factor o;_, 1 is the inverse of
the probability mass not discarded on position ¢ — n + 2, given by

i, ()

i—n+2

Ehi +2tmm( (h; 711+1))

i—n

Oi—n+1 =

This factor makes sure that the total probability mass in the network remains
equal to 1.0. On every position we need to perform the summation in equation

IFor brevity we omit the parameters C' and ~ from these and the following equations.
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Algorithm 1 Forward beam search for text wy, .

Require: V', C, v, Wirgin, d, n, b
Ensure: A; = O/(hz:—n+2) for1 <i< N
1 Ao <= {([],1.0)}

2: for i =1 to N; do

3 A<= {}

4:  for all (hfjﬁl,a) in A;—; do

5 for all h; in V do
6: a* <= ax P(hi|h§:;+l,C’, ) X P(w;|h;, C,7)
7 hi_, ., < [hg:;whi]

8 A = A U{(hj_, 15,07}

9 end for
10:  end for
11:  A; < sumSame(A4;)
12:  A; < trim(A4;,0)
13: end for

6.12 with a time complexity of O(b|V]), and we need to sort these values to find
the b most likely values in the next iteration, with complexity O(b|V|log(b|V|)).

The pseudo-code for the forward beam search is shown in algorithm 1. When
this algorithm has been executed for a given text Wyqqi, the collection A;
contains all o/(h!_, , ,) for position i. The functions sumSame(4;) and trim(A4;)
are not shown in the algorithm and perform the following operations on A; :
sumSame(A;) sums the probabilities of all structures (h}_,,,,, @) in A; that have

the same value for h;_n +o- The function trim(A;, b) is the implementation of the

trim(a’(hﬁi}lﬂ)) operator introduced earlier, i.e. it sorts all the values according
to decreasing «, selects the b most likely and rescales the remaining values with

0i—n+1 to make sure that the total probability mass remains 1.0.

We could define a similar trimmed version of S(hi_, ,,), but here we face an
additional difficulty. We use relative discounted Kneser-Ney smoothing to compute
P(hiy1|hl_, 5, C,v), which requires the computation of §(h!_, ,,). This value
depends on all possible values for i;_, 42, and limiting the computation to only the
b most likely values of h;_, 12 would result in a degenerate probability distribution.

For this reason we introduce a new forward probability y(h!_, . ,, h;) which is the
joint probability of observing the words w?, the sequence hi 1o and the hidden
variable h;. This value is defined for ¢ > j and is given by

Pwilhi) >y, oz, )P(hifhi=, ) ifi=j

7( i—n 7h’) = i— i— . .
+257% {P(wz|hz) Zhi—n+1 V(hi—gw—l’hj)P(h”hi—iL-l-l) ZfZ >
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This value is similar to a(h}_, ), but also includes the probability of generating
hj. We can interpret y(hi_, . ,, h;) as a series of messages, where for every different
Value of hj, a series of messages 7(h17n+2, h;) is passed from position j to the end
of the sequence. A trimmed version of this variable is defined as

{ai_mp(wm)zhim‘m( o (WiZh )P(hifbiTh ) ifi=]

/(1
V(hi—n 7h): . i cp - .
20 G P S, trim( (0L h) PO B ) if i

The sum in this equation has time complexity O(b|V'|) and sorting the values has
complexity O(b|V|log(b|V|)). Doing so for every position in the sequence results
in a time complexity of O(N,, x [b|]V]log(b|V])]).

After passing all messages to the end of the sequence, we have a collection of

messages Y (h gy ;). To compute the probability of h; given wyes+ we sum

over all posmble values of h ST

N, ) /(1 NVu .
P(h ‘|Wt t C"') = Eh%z*nﬁ ’Y(hN”_"+27 hz) ZhNu —n+42 v (hN“_"+27 hz)
/ o P(Wtest|CT) a P(Wtest|CT)

Summarizing, we first pass a series of forward messages a(h!”! +1) from the start
of the sequence to the end. We then pass for every position j in the sequence, a
series of v(h:~} 41, hj) messages from that position to the end of the sequence. One
important dlsadvantage of this approach is that in the original forward-backward
algorithm only a single pass of forward messages and a single pass from backward
messages is required to compute the probability distribution for every h;. In
our formulation however we first perform a single pass of forward messages, and
then perform, for every position 7, a pass of forward messages *y(hj oy hi) from
position 7 to the end of the sequence. This greatly increases the complexity of
the algorithm. Therefore we make an additional assumption: we assume that the
probability distribution of h; given W{V * is approximately equal to the probability

of h; given the words wit® for a certain distance .

P(hilwy"*,CT) = P(hi|w;",C")

This seems plausible since the words that occur in the sequence far away from the
hidden word will have little influence on this word.

The total time complexity of the forward-forward beam search is O(NV,, x (1+d) x
0|V + b|V]log(b|V])), which will be, even for fairly high values for b and d, much
lower than the original time complexity of the forward-backward algorithm.

The pseudo-code for the forward-forward beam search is shown in algorithm 2.

The ~ (h; 71¢+17hi) values are stored in a data structure I'; = {(h; 711+1’ hi,v)}
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Algorithm 2 Computation of expected values of hy, ..., hy, given wy.

Require: V7 C,’Y, Wirain, 67 b; A17 '~-7ANt
Ensure: H; ~ P(hj|Wirqin, C,7y) for 1 <j <N,
1: for j =1 to N; do

2: Fj <~ {}

3:  for all (h;_n_,’_Q,oz) in 4; do

4: Fj <= Fj U {(hg'fn+27 hj7 a)}

5. end for

6: fori=j+1toj+ddo

7: F; = {}

8: for all (h!~) ,,h;,7)inI;_; do
9: for all h; in V do

10: v* <y x P(hilhiZ) 1, C,7y) x P(w;|hi, C,7)
11 hé—n+2 - [hz::?lw&hi]

12: I <= T U{(hi_, 42, h5,7%)}
13: end for

14: end for

15: I, < sumSame(I})

16: I'; < trim(I,b)

17:  end for

18: Hj = {}

19:  for all (/5 , h;,7)in Ty, do
20: Hj < H; U{(hj,7)}

21: end for
22:  H; < sumSame(H,)
23: end for

where v is the value of 'y’(h;:;lwr17 h;). In every step we compute for every possible

(h;:iH_l,hi,fy) in T';_q, the new probability v*, and add (h;_n_w,hi,’y*) to I
The functions sumSame(I"};) and trim(I"}) (not shown in algorithm 2) perform the
following operations on I'' : sumSame(I'") sums the probabilities of all structures
(h}_,, 45, hi,7) in I” that have the same value for h;7n+2 and for h;. The function
trim(I’,b) is the implementation of the trim(y’ (h;;lI 41, i) operator introduced
earlier, i.e. it sorts all the structures according to decreasing ~y, selects the b
most likely values and rescales the counts by o;_,+1 to make sure that the total

probability mass remains 1.0.

Related work We are not the first authors discussing the high time complexity
of HMM’s, although none of the previous proposed methods could be used here.
Mitchell et al. (1995) and Yu and Kobayashi (2003) propose algorithms that reduce
the time complexity of second order explicit-duration HMM’s, but the suggested
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algorithms are still quadratic in the number of hidden states, which is also the case
in the on-line learning algorithm proposed by Krishnamurthy and Moore (1993).
Shue and Dey (2002) develop a efficient algorithm for HMM’s that have hidden
states that are nearly completely decomposable, where the hidden states can be
grouped together in “super-states”, which is not the case here.

6.2.3 Training

During training we want to find parameters C' and « that optimize the likelihood
of the model on an unseen test sequence. For this we use two corpora, a large
COTPUS Wirgin = [Wi...wn,] and a smaller corpus Wheidout = [W1..-WN,, |- Wirgin 18
used to determine the counts C' and Wycjgoy: 18 used to determine the smoothing
parameters 7.

We find the counts C' that maximize the likelihood of the model on the training
COTPUS Wirqin 1.6, we select the parameters such that the model “explains” the
observed words in the training corpus. In HMM’s, this is typically performed using
the expectation-maximization (EM) algorithm. The algorithm starts from a initial
estimate of the counts C'. This estimate is then improved in several iterations,
where every iteration performs an expectation step and a maximization step. Since
every step improves the likelihood of the model on Wy,qn, it is guaranteed to
find a (possibly local) maximum likelihood estimate. In the expectation step the
expected value of every hidden variable P(h;|W¢qin, C™,~7) is computed with the
forward-backward algorithm.

For the LWLM, we perform three modifications to this algorithm. The first
modification is that we first train a standard n-gram language model on the
observed words of the training corpus. We then set the probability distribution
of every hidden word h; in the training corpus to P(wﬂwfl,wfvﬁl), ie. to the
probability of the observed word, given all words that occur before and after this
word. This probability is computed as

n—1
P(wilwi™ ' wii) ~ PlwiwiZ) ) [T Plwsem|wilmds ™)
m=1

This assignment makes the assumption that likely hidden words at a certain
position are the words that are likely to be observed in that context, or more
specifically, that are likely to be generated by the n — 1 previous observed words,
and that are likely to generate the n — 1 next observed words. We assign these
distributions to the hidden variable h; on every position and then construct the
initial counts C! from these distributions by collecting the following soft counts:
(1) the frequency of the hidden word h; generating the observed word w; and (2)
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%

the frequency of the m-gram of hidden words h;}_, ,, occurring in the sequence of
hidden words,h = [hy...hN], where the length m ranges from n to 1.

The second modification to the Baum-Welch algorithm is the use of the forward-
forward beam search to compute an approximation of P(h;|Wrqin, CT,77). The

approximate values found by this method are used to construct the new counts
CT+1.2

The third modification is that we also update the smoothing parameters v™+1: we
use an iterative line-search to find the parameters that optimize the likelihood of
the parameters given the held-out corpus. After the smoothing parameters have
been optimized, we again perform an iteration of the EM-algorithm. This cycle is
repeated until the parameters have converged and the perplexity on the held-out
corpus does not, decrease anymore.

6.2.4 Predicting an unseen text

We have explained how we can estimate the hidden words for a particular given
text. However, we would also like to use the model to predict the probability
P(Wiest|C,v) of an unseen text wies = [wir...wy,]. Standard HMM’s use the
forward algorithm to compute this value

P(Wtest|cu7) = Z a(h%:7n+2)

Ny
hNu7n+2

where a(h!_, ,,) is defined as in the previous section. This algorithm thus
effectively passes a series of messages from the start of the sequence to the end.
The messages a(hxi‘ﬁn +2) at the end of the sequence are then summed, resulting
in the probability of observing the entire sequence.

Since the time complexity of this algorithm is O(N,,|V|™), we propose the forward
beam search. This method uses the trimmed o'(hj_, ;) to compute

P(Wtest|c’7’y) - Z O/(hz:—n-ﬁ—2)

h27n+2

where o/(hi_, ) is defined as in the previous section. Note that, although this
method drops unlikely o/ (hj_,, , ;) values, it assigns a non-zero probability to every
possible sequence of observed words, thanks to the smoothing method used in
equation 6.8. This method is outlined in algorithm 3.

2Note that in fact we also need to estimate P(h§7n+1|wtmm,077’f), i.e. the probability
of the observing the sequence thJrl given the training text and the current parameters. For
standard HMM’s, this value can easily be computed using the forward and backward messages
(see Bishop (2006)). An approximation to this value is also computed with the forward-forward
beam search, we refer to section C in the appendix for details on this method.
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Algorithm 3 Compute probability of observed text wiest

Requirei Wtest, ANt
Ensure: P ~ P(wics|C,7)
1: P<0 )
2: for all (h;—n+2’a) in Ay, do
3: P<P+a
4: end for

N-gram models that map words to hidden variables or clusters often improve the
ability of a model to predict the probability of unseen sequences, but they can also
hurt precision when assigning to much weight to unseen sequences (Goodman,
2001). For this reason it is often a good idea to interpolate these models with a
standard n-gram model. We define an interpolated version of the LWLM as

Nt
P(Wtest|ca 7) = H [ap(hz|hz:ib+17 077) X P(wl|h27 077) + (1 - Q)Prkﬂ(w”w;:}w—l)}

i=1

where 0 < o < 1 is a constant value optimized on a held-out text.

6.2.5 Implementation of the LWLM

We have discussed a number of adaptations to the standard algorithms used for
HMM’s to reduce the time complexity of these algorithms. However, even with
this reduced complexity, a number of additional optimizations were implemented
in order to be able to run the LWLM on a large dataset.

Distributed training We have developed a distributed computing infrastructure
that enables the distributed computation of the LWLM on a large number
of computers. This infrastructure is robust, very easy to set-up, downloads
automatically the necessary class-files and datasets, and has remote exception
handling. Furthermore it has been implemented for performance, with data
caching, load balancing and automatically selection of the fastest computing clients.
For the full description of this architecture we refer to section A in the appendix.

Additional optimization of the forward-forward and forward beam search
We have seen how the time complexity of the forward-forward beam search is
O(N(b|V| + b|V|log(b|V])) and the complexity of the forward beam search is
O(N,(b|V] + b|V|log(b|V])). In fact, these algorithms are dominated by the b|V|
term, since sorting the values, with complexity of b|V|log(b|V]), has a very small
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constant factor, and can be ignored in practice. Because of the large size of |V,
performing b|V'| computations makes the algorithm too slow for many applications.
For this reason we only consider a subset W C V of all hidden words. The possible
hidden words h; that are selected for a particular observed word w;, are the words
with highest values P(w;|h;)P(h;). We set the size of W greater then b, but
substantially smaller than V, e.g. often we set b = 50 and |W| = 200. This
optimization is used in the forward-forward beam search and the forward beam
search. It is however not used when computing the likelihood of the model on a
test text, since selecting W based on the observed word w; when trying to predict
this word, is a form of cheating, resulting in an unrealistic low likelihood.

6.3 Evaluating the proposed language models

In this section we evaluate the performance of the different language models. The
performance of a language model is typically measured in terms of the perplexity
of the model on the unseen test corpus w = [wy...wy, |

1
P(wr)

where P(wr) = Hf\i‘l P(w;|w'™") is the probability of the test corpus. The
perplexity can be seen as the confusion of the model. For example, a language
model that assigns equal probability to 100 words at every position in the held-out
corpus has a perplexity of 100 (assuming that at every position the observed word
belongs to the set of predicted words). One attractive property of the perplexity
measure is that the “true” model for any data source will have the lowest possible
perplexity for that source. Thus, the lower the perplexity of our model, the closer
it is in some sense, to the model of natural language employed by humans.

We first compare the performance of the latent words language model with a other
language models in section 6.3.1 and then evaluate certain aspects of the proposed
models in section 6.3.2.

6.3.1 Comparison

We compare the performance of the language models presented here on three
different corpora. The first two corpora, Reuters and APNews®, are collections
of news articles that are distributed respectively by the Reuters and Associated
Press news agencies. Both corpora have a large fraction of financial news, together

3We would like to thank Yoshua Bengio and Hugo Larochelle for providing this corpus.



EVALUATING THE PROPOSED LANGUAGE MODELS 83

with a smaller amount of general news. The third corpus EnWiki is a collection of
encyclopedia articles from the English language Wikipedia. The APNews corpus
was preprocessed as described by (Bengio et al., 2003), the other two corpora were
preprocessed by concatenating all sentences and mapping all words that occurred
less than 3 times in the combined training, held-out and test corpus to a new,
“UNKNOWN?” symbol. All punctuation was preserved. The vocabulary size of the
corpora is 39373 for Reuters, 15247 for APNews and 54371 for EnWiki, reflecting
the larger topical variation of the EnWiki corpus. For both corpora we use a
fixed section of 100K consecutive words as a held out corpus, used to optimize the
smoothing parameters of every methods, and a section of 100K consecutive words
as a test corpus, used to measure the perplexity of every model.

Table 6.1 shows the performance of the different models on the three corpora. We
compare 5-gram models with interpolated smoothing (IP), absolute discounted
Kneser-Ney smoothing (ADKN), relative discounted Kneser-Ney smoothing
(RDKN), the latent words language model (LWLM ) and the interpolated version
of this model (int. LWLM). For comparison’s sake we also include the results of
the full-ibm-predict model (IBM ), which is an existing language model that creates
clusters of words that are syntactically and semantically similar, but contrary to
our method, all words are hard-assigned to a single cluster (Goodman, 2001). It
was found to be the best cluster-based model by Goodman (2001).

We make the following observations:

e Interpolated smoothing performs much worse then the other language
models, which is well-known (e.g. Chen and Goodman (1996)).

e Relative discounted Kneser-Ney smoothing consistently outperforms ab-
solute discounted Kneser-Ney smoothing. We have performed a fair
comparison where both models used the same number of discount parameters.
This refutes any optimality claims that have been made for absolute
discounted Kneser-Ney smoothing (Chen and Goodman, 1996; Goodman,
2001). In fact we suspect that smoothing methods that use more complex
methods for discounting will prove to be even more successful.

e The latent words language model outperforms both variants of Kneser-
Ney smoothing. This shows that the algorithm successfully learned word
similarities that alleviated the sparseness problems of n-gram models. We
will discuss this in more depth in section 6.4.

e The interpolated latent words language model outperforms all other tested
models. Compared to absolute discounted Kneser-Ney, which is a frequent
used baseline, LWLM performs between 14% and 18% better. Compared
to full-ibm-predict model, which is to our knowledge the best n-gram based
language model, it performs between 7% and 10% better.
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| Method | ReutersNews | APNews | EnWiki |

1P 130.61 148.49 170.29
IBM 108.38 125.65 149.21
ADKN 114.96 134.42 161.41
RDKN 112.37 132.99 160.83
LWLM 108.78 124.57 151.98
int. LWLM 96.45 112.81 | 138.03

Table 6.1: Results in terms of perplexity of the 5-gram models with interpolated
(IP), absolute discounted Kneser-Ney (ADKN) or relative discounted Kneser-
Ney (RDKN) smoothing, of the latent words language model (LWLM) and its
interpolated version (int. LWLM) and of the full ibm predict class-based language
model (Goodman, 2001).
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Figure 6.4: Perplexity of the interpolated LWLM, depending on the length of the
n-gram (n) or of the beam size (b).

6.3.2 Additional experiments

In the following paragraphs we investigate certain properties of the interpolated
LWLM. For all experiments we train the model on the 5M Reuters corpus.

In a first experiment we justify the choice for a relatively large value for n. Figure
6.4a shows how the perplexity of the model varies with increasing n. Asn increases,
we take into account a larger context, resulting a lower perplexity of the model.
We see that we need to use a value of n =4 or n = 5 for a competitive language
model, justifying the approximate techniques developed in this chapter to make
using such a large context window possible.

In a second experiment we see the influence of the beam size for the LWLM. For
this we measure the perplexity of the interpolated LWLM with different beam
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Figure 6.5: Perplexity of the interpolated LWLM for different number of
parameters employed in the Kneser-Ney smoothing method.

sizes. We see from figure 6.4b that even with a beam size of 1, i.e. when we only
consider the single most likely value for the hidden words, the LWLM outperforms
RDKN (which achieves 112.37 on this corpus). With increased beam width the
LWLM achieves lower perplexities, although this difference is small for beam sizes
larger then 20. In our experiments we have chosen a conservative beam width of
50.

In a third experiment we see the influence of the number of smoothing parameters
employed in our model. We use the definition given in section 6.1.4 for relative
discounted Kneser-Ney smoothing: for the n-grams h;_,41...h; of a particular
length n we create for the counts ¢(h;—n41...h;) a number of equally populated
intervals. The counts in a particular interval are then discounted with a certain
factor, unique to this interval. As we increase the number of intervals (and thus
the number of discount factors), the model has more expressive power, most likely
resulting in a more accurate model. Figure 6.5 shows how the perplexity of the
model changes with the number of intervals employed in the discount function. We
see that it is important to use more then one interval, but after that performance
levels off quite quickly. In the experiments we set the number of intervals to 5.
Note that for n-grams of different length, we have a different set of discount factors,
e.g. for a model with n =5 and 5 intervals for every discount function we have a
total of 25 discount factors.

6.4 Semantic acquisition

A different method for assessing the performance of the LWLM is to perform a
manual inspection of the hidden words that are estimated for a given sentence. An
informal evaluation has shown that the discovered hidden words capture synonyms
or related words, and that the hidden words are context dependent, essentially
disambiguating the observed words. Table 6.2 gives the hidden words for an
observed sentence from the training corpus, showing that for most words correct
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| a  japanese electronics executive was kidnapped in mexico|

a japanese tobacco executive  was kidnapped in mexico
the u.8. electronics director is abducted on usa
its german sales manager — were killed at uk

a british consulting  economist  are found of  australia
one russian electric spokesman  be abduction  into  canada

Table 6.2: Example of the most probable hidden words (bottom rows, sorted
according to descending probability) for a given observed sentence (top row, bold)
from the Reuters training corpus.

synonyms (e.g. kidnapped/abducted, executive/director) or related words (e.g.
Japanese/u.s., abducted/killed) are found. This expansion can help to solve the
underspecification and ambiguity problems of information extraction from natural
language. In the next section we will see how indeed this model does improve
semantic role labeling, especially in the context of a limited number of training
examples.

6.5 Related work

Finding (soft) clusters of similar words, or finding similarities between words, has
been a goal of NLP researchers for many years. It has been long time known
that the similarity of two words could be learned by comparing their relative
contexts in a large corpus: words occurring often in similar contexts tend to have a
similar meaning. This was maybe most famously formulated as the distributional
hypothesis, supported by theoretical linguists such as Harris (1954) and Firth
(1957).

A large body of work has focused on methods to model the context of a particular
word, and to compute a similarity measure based on these contexts. Frequent
choices to model the context is a window of words or the direct dependents of the
word in a syntactic dependency tree. Many methods have been used as similarity
measures, ranging from the cosine measure, to the Jaccard index or the Kullback-
Leibler distance (Pereira et al., 1993; Grefenstette, 1994; Lin, 1998b; Grishman
and Sterling, 1994; Hearst, 1992).

Other researchers have focused on using generative models to learn classes of words.
Related to our research is the work on unsupervised HMM’s to learn a part-of-
speech tagger (Merialdo, 1994). Typically a dictionary provides constraints in the
form of possible part-of-speech tags for a large collection of words, which are used
during the forward-backward algorithm to learn part-of-speech tags for all words in
the corpus. Without these constraints, it is hard to learn accurate part-of-speech
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taggers (Smith and Eisner, 2005), although the importance of correct smoothing
methods has also been recognized (Wang and Schuurmans, 2005). Recently, there
has been some work on learning HMM’s with Bayesian techniques such as Gibbs
sampling (Goldwater and Griffiths, 2007; Johnson, 2007). These methods however
could not be employed in this context, since they require impractically many (up
to 20000) iterations to converge.

Other generative models were designed specifically for language modeling. Class-
based language models aim to overcome the sparseness problems of n-gram
language model by clustering all words in a large number of classes (Brown et al.,
1992; Goodman, 2001). Typically a hard assignment is chosen, where a word
belongs to exactly one class. Although these methods outperform standard Kneser-
Ney smoothing, we have shown in the previous section that the LWLM outperforms
these models in terms of perplexity on unseen texts. Furthermore, we will see in
the next section that the probabilistic distances learned with the LWLM are more
useful for improving information extraction methods than the classes.

Finally we would like to mention the interesting work performed by Collobert and
Weston (2008) who propose a convolutional neural network architecture that is
jointly trained for language modeling and for a number of different information
extraction tasks. During the joint training, a look-up table is learned that maps
words to a number of hidden classes. After training these classes represent
syntactically and semantically related words, similar to the results achieved in
our work. Another common point was that the authors found that a classifier
for semantic role labeling achieved best results when trained jointly as a language
model. In the next chapter we will see this is a result that is also confirmed by
our work.

6.6 Conclusions of this chapter

In this chapter we have introduced the latent words language model. We started
by answering the question “What happens if we replace the hidden states in
a hidden Markov model with hidden words?”. We saw that this model would
have an infeasible large time complexity when computed exactly, and we have
thus introduced a number of approximate methods with lower time complexity.
The forward beam search was proposed as an approximate variant of the forward
algorithm with lower time complexity. This algorithm was used in the forward-
forward beam search to compute the expected value of the hidden words given an
observed text, and in a method to compute the probability of an unseen text.

We have compared the LWLM with a number of other language models and
seen that the interpolated LWLM outperforms all other n-gram models. We
attribute this to the fact that the word similarities lessen the sparseness problem of
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traditional n-gram models. We also outperform the full-ibm-predict model, which
learns hard word clusters. This can be explained by the fact that our probabilistic
model is able to learn weighted similarities, i.e. it doesn’t assume that a word is
completely similar or dissimilar to another word.

Finally an informal inspection showed that the learned word similarities correlate
with human assessment of similar words, and that the hidden words can be used to
disambiguate a certain observed in a certain context. In the next chapter we will
see how these can be used to augment supervised information extraction methods.



Chapter 7

Using unsupervised models
for information extraction

In chapter 5 we argued that all weakly supervised models rely on the same
assumption: examples that are close together in a high-density region have the
tendency to be assigned the same label. In that chapter we have then proposed
an approach where a single Bayesian network modeled both the space of examples
and the labels assigned to these examples. Unlabeled data was then added to this
model by considering the labels of the unlabeled examples as hidden variables that
could be automatically estimated with Markov chain Monte Carlo methods.

In this chapter we discuss a different approach to weakly supervised learning: we
use one unsupervised Bayesian network to model the space of examples and feed
the structures learned by this model in a second Bayesian classifier that is used
for classification. In this chapter we consider two models to model the input
examples: the latent words language model and a class-based language model. We
feed the results of these models in a supervised discriminative classifier. We test
this approach on two information extraction tasks: word sense disambiguation and
semantic role labeling.

7.1 Unsupervised models

We first train two unsupervised models on unlabeled data. The first model is the
latent words language model (LWLM) discussed in the previous chapter. We train
this model on a 20M words Reuters corpus to learn the counts C' and smoothing
parameters 7y (see section 6.2.2). We then use this model to find the probability
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distribution P(h;|w2*,C,~) of hidden words h; for every word w; in the training
and test data of the information extraction task at hand.

The second unsupervised model used in this chapter is the class-based language
model full ibm predict (Goodman, 2001), which was also trained on the same 20M
Reuters corpus. This model learns an assignment of every word in the vocabulary
to a cluster ¢;. Once this assignment is learned, we can trivially assign the correct
cluster to every word in the training and test data for the information extraction
task. The number of clusters is optimized on a held-out corpus and was selected
to be 1250.

Both unsupervised models have exactly the same goal: minimizing the perplexity
of the model on an unseen text. The main difference is that the first model
learns a probabilistic mapping from the observed words to latent words, where
the second model uses a hard mapping, where every observed word is assigned to
a single cluster. A second important difference is the number of latent variables:
for the LWLM the number of hidden variables is equal to the number of words
in the vocabulary, while for the class-based language model the number of hidden
variables is equal to the number of classes.

7.2 Words Sense Disambiguation

We first discuss weakly supervised learning for word sense disambiguation (WSD).
WSD, was described in section 3.3 as the task of selecting the right sense of a
particular word from a fine-grained dictionary of different senses depending on the
context the word occurs in. We saw how the generative and discriminative models
for this task use a large number of features extracted from the context to perform
word disambiguation. In this section we will expand this model to the weakly
supervised case where we incorporate structures learned from an unsupervised
model.

7.2.1 Expanding the set of features

We first consider a method that employs the hidden words estimated by the LWLM.
Given the hidden words for both the Semcor training set and the Senseval3 test
set, we expand the standard set of features f(w;) (section 4.3.1) with two types
of probabilistic features. The first type is the hidden word for the word being
disambiguated. |V| extra values are thus appended to the feature vector f(w;),
containing the probability distribution over the |V| possible values for the hidden
variable h;. The second type of features are the probability distributions for the
hidden variables within a certain window of the current word. Also for these |V|
probability values are appended to the feature vector.
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| features | nouns | verbs | adjectives | all |

|  standard | 65.12 | 68.15 [ 5410 [ 66.32 ]

+hidden words | 67.36 | 69.35 55.06 67.61
~+clusters 66.5 68.59 55.20 66.97

Table 7.1: Results (in terms of % accuracy) for word sense disambiguation on the
Senseval3 dataset using a supervised discriminative classifier with extra features
derived from hidden words or clusters from a class-based language model.

We also test an alternative unsupervised model, the class-based IBM model. Also
here two types of features are used: the class of the current word and the classes
of all words within a certain window of the current word. These classes are all
appended to the feature vector.

Once all feature vectors are expanded, they are used in a supervised discriminative
classifier that is trained on the Semcor corpus.

7.2.2 Evaluation

The model is tested on the test data from the Senseval3 workshop (Snyder and
Palmer, 2004). Also here the feature vectors are expanded as described above
and used to test the accuracy of the model. Table 7.1 shows that both features
improve the accuracy of the classifier. The accuracy for the classifier using hidden
words features are 67.36%, 69.35% and 55.06% for nouns, verbs and adjectives
respectively, which are all higher then for the supervised classifier. The accuracy
of this classifier on all words is 67.61%, which is to the best of our knowledge, the
best result achieved on this dataset.

The classifier using cluster features also outperforms the standard classifier,
although it performs worse for nouns and verbs than the classifier that uses hidden
words. Since nouns and verbs make up the majority of the words to be labeled,
this classifier also performs lower overall.

7.3 Semantic role labeling

We consider two methods for weakly supervised semantic role labeling (SRL). In
the first method the hidden word or hidden class are included as an extra feature
(section 7.3.1). The second method automatically expands the training set by
selecting similar sentences from a large unlabeled corpus (section 7.3.2). Both
approaches are evaluated in section 7.3.3.
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Figure 7.1: Mapping dependents of one occurrence of “makes” to another.

7.3.1 Expanding the set of features

First the hidden words P(h;|wl'*, C,~) are estimated for both the CoNLL 2008
training and test set. Here we only use one type of probabilistic feature, the hidden
words for the word that is currently being labeled. These probabilistic features
are appended to the feature vector in a manner identical as for WSD.

We also test an alternative method where we append the feature vector with the
cluster of the word being labeled, where the clusters are learned by the IBM class-
based language model.

7.3.2 Automatic expansion of the dataset

In this section we discuss a different approach, where the training set is expanded
with automatically labeled examples from a large unlabeled corpus. This method
was first proposed by Fiirstenau and Lapata (2009) and is tailored to the specific
case of weakly supervised learning for SRL.

7.3.2.1 Original model

Given a set of labeled verbs with annotated semantic roles, Fiirstenau and Lapata
(2009) automatically find for every annotated verb similar occurrences of this verb
in a large corpus of unlabeled texts. Given two occurrences of the same verb at
position ¢ with m dependents and at position j with n dependents, we define a
mapping from i to j as an injective function o : M; — M, ;) that maps a non-empty
subset M; C {1,...,m} from the m dependents at position ¢ to a non-empty subset
Mgy € {1,...,n} from the n dependents at position j , where |M;| = |M,(;| and
different dependents in the first occurrence are mapped to different dependents in
the second occurrence.

For example, figure 7.1 shows two occurrences of the verb “makes”. For the
first occurrence the verb has the direct dependents “Stevenson” and “equipment”,
while in the second occurrence this verb has direct dependents “Poland” and
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“machinery”. This results in a mapping from words “Stevenson” to “Poland” and
from “equipment” to “machinery”.

The similarity of this mapping is computed from the semantic and syntactic
similarity between the mapped words and is given by

sim(o) = Z (o syn(wi, wogr)) + sem(wi, wy(r)) — B) (7.1)
ke|M;|

Here « is a constant, weighting the importance of the syntactic similarity
syn(wy, We(k)) compared to semantic similarity sem(wy,wq(x)), and 3 can be
interpreted as the lowest similarity value for which an alignment between two
arguments is possible. syn(ws, w,(y)) denotes the syntactic similarity between the
dependency label of word wy, and the dependency label of word wg (). This value
is defined as 1 if the dependency labels are identical, 0 < a < 1 if the labels are of
the same type but of a different subtype' and 0 otherwise. The semantic similarity
sem(wk7wg(k)) is estimated as the cosine similarity between the contexts of wy
and wey (g in a large text corpus.

The similarity between two occurrences of the same verb on positions ¢ and j is
defined by

sim(w;, w;j) = max sim(o) (7.2)

We thus find the mapping o with highest similarity that maps dependents of verb
w; to similar dependents of verb w; and use this mapping to compute the similarity
of the occurences at positions ¢ and j. For every verb in the annotated training set
we find the s occurrences of that verb in the unlabeled texts with the most similar
contexts, given the best possible alignment. We then expand the training set
with these examples, automatically generating an annotation using the discovered
alignments. The variable s controls the trade-off between annotation confidence
and expansion size. The final model is then learned by running the supervised
training method on the expanded training set. The values for s, a, a and [ are
optimized automatically in every experiment on a held-out set (disjoint from both
training and test set).

7.3.2.2 Including hidden words

We adapt this approach by employing a different method for measuring semantic
similarity. Given two words w; and we(;) we estimate the probability distribution of

ISubtypes are fine-grained distinctions made by the parser such as the underlying grammatical
roles in passive constructions.
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the hidden word on these positions, which we refer to with H(h;) = P(hi|w>*, C, )
and H'(hy;)) = P(hg(i)|wivt70, 7). We use the Jensen-Shannon (Lin, 1997)
divergence to measure the distance between these two distributions, given by

[D (H(hi)llavg) + D (H'(ho())llavg)] (7.3)

N =

JS(H (hi)|| H' (ho(i))) =

where avg = w is the average between the two distributions and

D (H(h;)||avg) is the Kullback-Leibler divergence (Cover and Thomas, 2006) given
by

D (H(h;)||avg) = Z H(h log (7.4)

The Jensen-Shannon divergence is a positive number greater than or equal to 0
that is closer to 0 if the two distributions are more similar. This divergence is
converted to a similarity value between 0 and 1 with

sim(wi, Wo()) = exp(—=X x JS(H (hs)|[|H' (hoe))) (7.5)
here )\ is a constant that is optimized on a held-out set.

We also experiment with a similarity measure proposed by Lin (1998a). This
author defines similarity between two distributions as the ratio of the information
shared by the two distributions and the information in every distribution separately.
In our case this translates to

2 x 32, H(hi)H' (hi)log(P(hi))
>n, H(hi)log(P(hi)) + 32, H'(hi)log(P(hi))

where P(h;) is unigram probability of the hidden word h;, which is independent of
H or H'. In this similarity measure infrequent hidden words carry a relative higher
weight then frequent hidden words. This weight is proportional to the information
content log(P(h;)) of P(h;).

sima (Wi, We(;)) = (7.6)

We adapt the original expansion algorithm with these two similarity measures.
Although these changes might appear only a slight deviation from the original
model discussed by Fiirstenau and Lapata (2009) it is potentially an important one,
since an accurate semantic similarity measure will greatly influence the accuracy
of the alignments, and thus of the accuracy of the automatic expansion.

7.3.3 Evaluation of weakly supervised SRL

We perform a number of experiments where we compare the standard supervised
discriminative model with the different weakly supervised methods proposed in
sections 7.3.1 and 7.3.2.
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| | 5% [ 20% | 50% | 100% |
| Discriminative | 40.49% [ 67.23% [ 74.93% | 78.65% |

HWZFeatures 60.29% | 72.88% | 76.42% | 80.98%
ClassFeatures | 59.51% | 66.70% | 70.15% | 72.62%

CosExp 47.05% | 53.72% | 64.51% | 70.52%
JSExp 45.40% | 53.82% | 65.39% | 72.66%
LinExp 51.84% | 57.98% | 67.39% | 74.66%

Table 7.2: Results (in Fl-measure) on the CoNLL 2008 test set, comparing the
standard supervised classifier with different weakly supervised classifiers, using
different portions of the full training set for training. See main text for details.

HWPFeatures Add the hidden words as probabilistic features.

ClassFeatures Add the class from a class-based language model as extra feature.
CosExp Expand training set, use cosine for semantic distance.

JSExp Expand training set, use Jensen-Shannon divergence on hidden words.

LinExp Expand training set, use Lin’s distance measure on hidden words.

Table 7.2 shows the results of the different supervised and semi-supervised methods
on the test set of the CoNLL 2008 shared task. We experimented with different
sizes for the training set, ranging from 5% to 100%. When using a subset of the
full training set, we run 10 different experiments with random subsets and average
the results.

We see that the HWFeatures method performs better than the other methods
across all training sizes. Furthermore, these improvements are larger for smaller
training sets, showing that the approach can be applied successfully in a setting
where only a small number of training examples is available. When comparing
the HWFeatures method with the ClusterFeatures method we see that, although
the ClusterFeatures method has a similar performance for small training sizes,
this performance drops for larger training sizes. A possible explanation of this
result is the use of the clusters employed in the ClusterFeatures method. By
definition the clusters merge many words into one cluster, which might lead to
good generalization (more important for small training sizes) but can potentially
hurt precision (more important for larger training sizes).

We compare the different methods for automatic expansion (CosEzp, JSEzp and
LinEzp) to the supervised classifier and see that all three methods have improved
performance for small training sizes, but reduced performance for larger training
sizes. An informal inspection showed that for some examples in the training set,
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little or no correct similar occurrences were found in the unlabeled text. The
algorithm however always adds the most similar s occurrences to the training set
for every annotated example, also for these examples where little or no similar
occurrences were found. In these cases the automatic alignment often fails to
generate correct labels and introduces errors in the training set. In the future
we plan experiments that determine dynamically (e.g. based on the similarity
measure between occurrences) for every annotated example how many training
examples to add.

7.3.4 Related work

The most popular unsupervised models used for information extraction are
clustering methods that learn clusters of semantic and syntactic similar words.
These clusters are then used as extra features in the information extraction task.
Tang et al. (2001) uses the clusters from the class-based Brown language model
(Brown et al., 1992) in sentence parsing, but do not compare their classifier to a
classifier without these clusters. These clusters are also used by Koo et al. (2008)
in a syntactic dependency parser with an error reduction of 14.29% compared
to a parser without these clusters, and by Zhao et al. (2009) in a multilingual
dependency parser. Miller et al. (2004) use hierarchical word clusters (optimized
for bigram perplexity) in a discriminative named entity recognizer, achieving a
25% error reduction compared to a classifier without these clusters.

We have shown that for WSD and SRL using the LWLM hidden words improves
accuracy compared to the clusters from a class-based language model, and we can
thus safely assume that this will also hold for these other information extraction
tasks.

The research closest to our work is Li and McCallum (2005), who use the soft
clusters derived by Griffiths et al. (2005) in a supervised conditional random field
classifier for part-of-speech tagging and Chinese word segmentation, with an 14%
error reduction compared to a classifier without these features.

7.4 Conclusions

In this chapter we have discussed a different approach to weakly supervised
learning: feed the structures learned in an unsupervised model into a supervised
model trained for a certain information extraction task. We have discussed two
methods: use the hidden words or clusters as extra features and use these hidden
words and clusters in a similarity measure to automatically expand the training
set.
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For the second approach we have performed a number of experiments where we use
a similarity measure based on a cosine distance, or on a distance metric that uses
the hidden words with the Jensen-Shannon divergence or Lin’s similarity measure.
We saw that these methods only outperformed the supervised classifier for small
training sets, because of the incorrect examples introduced by the automatic
expansion.

Using the hidden words or clusters was a better approach that resulted in
a significant improvement over the supervised classifier for both word sense
disambiguation and semantic role labeling. This improvement was largest for small
training sets, showing that this method does successfully reduce the dependency
of the supervised model on large training corpora. Additionally this method also
outperformed a method that uses clusters from a class-based language model.
Because of its simplicity and independence of the specific information extraction
task, we expect that this method can be employed almost effortless in other tasks,
such as named entity recognition or part-of-speech labeling.
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Outline part Il : Information extraction for weak supervision of
images and video

In the previous chapters we have discussed various weakly supervised methods
and we have shown that these methods can be successfully employed to improve
information extraction methods. We have however only considered labeled and
unlabeled teztual data, i.e. data in a single medium. We now turn to the case
of multimodal weakly supervised learning. In this part we discuss methods that
employ information extraction methods to aid the automatic analysis of images
and video.

In chapter 8 we develop the appearance model which finds the entities present in
an image by analyzing a text describing this image. This model is subsequently
used in two applications, to align names in the text with faces in the image, and
to perform textual image retrieval.

Chapter 9 deals with the automatic annotation of video. We first focus on the
automatic annotation of actions of actors in the video, and apply the previously
developed semantic role labeling system to the transcripts of a video series. In
a second task we combine information extracted from the transcript with an
automatic analysis of the video to discover the different scenes in a video, and
to derive the location for every scene.

This research is motivated by the observation that frequently, the difficulties faced
by automatic methods for image analysis are even greater than these faced by
natural language processing methods, because of the large variations in scale,
lightning conditions and relative orientation of entities in images.

The work in this part of the thesis is described in the following articles:

- Koen Deschacht and Marie-Francine Moens. Text Analysis for Automatic
Image Annotation. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, Prague, 2007.

- Koen Deschacht and Marie-Francine Moens. Finding the Best Picture:
Cross-Media Retrieval of Content. In C. Macdonald, I. Ounis, V. Plachouras
& I. Ruthven (Eds.) Proceedings of the 30th European Conference on
Information Retrieval. Lecture Notes in Computer Science 4956 (pp. 539-
546), Springer, 2008.

- Koen Deschacht, Marie-Francine Moens and Wouter Robeyns. Cross-Media
Entity Recognition in Nearly Parallel Visual and Textual Documents. In
Proceedings of the 8th RIAO conference on Large-Scale Semantic Access to
Content (Text, Image, Video and Sound), USA, 2007.
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- Erik Boiy, Koen Deschacht and Marie-Francine Moens. Learning Visual
Entities and their Visual Attributes from Text Corpora. In Proceedings of
the 5th International Workshop on Text-based Information Retrieval, IEEE
Computer Society Press, 2008.

- Koen Deschacht and Marie-Francine Moens. Text Analysis for Automatic
Image Annotation, In Proceedings of the 19th Belgian-Dutch Conference on
Artificial Intelligence (Dastani, M. and de Jong, E., eds.), pp. 260-267, The
Netherlands, 2007.






Chapter 8

Automatic annotation of
Images

In this chapter we describe methods for the analysis of texts that describe an
image, with the goal of automatically creating annotations of images. This work is
motivated by fact that information extraction methods on images face even greater
difficulties than methods on text: entities for example often have dramatically
different appearances in different images, depending on pose, lighting conditions,
distance to the subject and other factors.

We start by describing the appearance model for entities in images (section 8.1)
and then extend this model to attributes (section 8.2). In section 8.3 we compare
this model to related research and we see in section 8.4 how it can be used in two
applications: name and face alignment (section 8.4.1) and image retrieval (section
8.4.2). We conclude in section 8.5.

8.1 An appearance model for entities

Figure 8.1 shows an example of an image-text pair, where the text describes the
entities that are present in the image. In this chapter we want to develop an
automatic method that can determine from this descriptive text that e.g. “Hillary
Clinton”, “Bill Clinton”, “David Paterson” and “Eliot Spitzer” are entities that
are likely to appear in the image. We limit this analysis to text only, without
considering any information present in the images.

To solve this task we propose the appearance model. This model assigns to
every entity in the text a probability of this entity being present in the image.
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New York State Sen. Hillary Clinton celebrates
after making her nomination acceptance speech
along with husband and former U.S. President
Bill Clinton, left, David Paterson, second
right, and gubernatorial candidate Eliot Spitzer,
right, during the New York State Democratic
Convention in Buffalo, N.Y., on Wednesday, May
31, 2006. Paterson is running for the New York
State Lt. Governor’s office.

Figure 8.1: Example image-text pair.

We first detect all entities (section 8.1.1), and determine for every entity its
visualness (section 8.1.2) and salience (section 8.1.3), which are then combined
in the appearance model (section 8.1.4). Finally we evaluate our model in section
8.1.5.

8.1.1 Entity detection

To detect all entities in the text we rely on existing tools for named entity
recognition and part-of-speech tagging.

We use an existing named entity recognition package to recognize person names in
the text. The OpenNLP package! detects noun phrase chunks in the sentences that
represent persons, locations, organizations and dates. To improve the recognition
of person names, we use a dictionary of names, which we have extracted from the
Wikipedia? website. The noun phrase co-referents in the texts that are in the form
of pronouns (e.g. “he”, “she”) are resolved with the LingPipe® package.

We use LTPOS (Mikheev, 1997) to perform part-of-speech tagging (i.e., detecting
the syntactic word class such as noun, verb, etc.) and assume that every noun
phrase in the text represents an entity.

8.1.2 Visualness

Any given text contains a large number of entities. We first develop a soft filter
that assign to every entity in the text a probability that this entity is visual, e.g.
that it can be perceived visually. Example of entities that can be perceived visually

Thttp://opennlp.sourceforge.net /
2http://en.wikipedia.org/
Shttp://www.alias-i.com /lingpipe/
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are “car” and “house”, while “agreement” or “thought” can not be expected to be
directly perceived visually.

We first determine the meaning of all entities in the text with respect to the
WordNet database and then employ a distance metric together with a number of
seed synsets to compute the visualness.

Word sense disambiguation After we have performed entity detection, we want
to classify every entity according to the WordNet semantic database (Fellbaum,
1998). We use the word sense disambiguation (WSD) system described in chapter
3. Additionally we assign all person names detected by the named entity recognizer
to the synset that corresponds to a human being.

WordNet similarity We determine the visualness for every synset using a method
that is inspired by Kamps and Marx (2002). Kamps and Marx use a distance
measure defined on the adjectives of the WordNet database together with two seed
adjectives to determine the emotive or affective meaning of any given adjective.
They compute the relative distance of the adjective to the seed synsets “good” and
“bad” and use this distance to define a measure of affective meaning.

We take a similar approach to determine the visualness of a given synset. We first
define a similarity measure between synsets in the WordNet database. Then we
select a set of seed synsets, i.e. synsets with a predefined visualness, and use the
similarity of a given synset to the seed synsets to determine the visualness.

Distance measure The WordNet database defines different relations between its
synsets. An important relation for nouns is the hypernym /hyponym relation. A
noun X is a hypernym of a noun Y if Y is a subtype or instance of X. For example,
“bird” is a hypernym of “penguin” (and “penguin” is a hyponym of “bird”). A synset
in WordNet can have one or more hypernyms. This relation organizes the synsets
in a hierarchical tree (Hayes, 1999).

The similarity measure defined by Lin (1998b) uses the hypernym/hyponym
relation to compute a semantic similarity between two WordNet synsets S; and
So. It is based on the intuition that entities close in the hypernym tree should
have a high similarity. The method first finds the most specific (lowest in the tree)
synset S, that is a parent of both S; and S3. Then it computes the similarity of
S1 and Sy as

. B QIogP(Sp)
sim(S, S2) = logP(S1) + logP(Ss)
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Here the probability P(S;) is the probability of labeling any word in a text with
synset S; or with one of the descendants of S; in the WordNet hierarchy. We
estimate these probabilities by counting the number of occurrences of a synset in
the Semcor corpus (Fellbaum, 1998; Landes et al., 1998), where all noun chunks
are labeled with their WordNet synset. The probability P(.S;) is computed as

L CS) K
P8) =S gy T POV

where C(S;) is the number of occurrences of S;, N is the total number of synsets
in WordNet and K is the number of children of S;. The WordNet::Similarity
package (Pedersen et al., 2004) implements this distance measure and was used by
the authors.

Seed synsets We have manually selected 25 seed synsets in WordNet, where we
tried to cover the wide range of topics we were likely to encounter in the test
corpus. We have set the visualness of these seed synsets to either 1 (visual) or
0 (not visual). We determine the visualness of all other synsets using these seed
synsets. A synset that is close to a visual seed synset gets a high visualness and
vice versa. We choose a linear weighting:

sim(s, s;)

vis(s) = viS(8;) ——=———
(5) = S vis(s) TS

K3
where vis(s) returns a number between 0 and 1 denoting the visualness of a synset
s, s; are the seed synsets, sim(s,t) returns a number between 0 and 1 denoting
the similarity between synsets s and ¢ and C(s) is constant given a synset s:

C(s) = Z sim(s, s;)

8.1.3 Salience

Not all entities discussed in a text are equally important. We would like to discover
what entities are in the focus of a text and what entities are only mentioned
briefly, because we presume that more important entities in the text have a larger
probability of appearing in the image than less important entities. We define
the salience measure, which is a number between 0 and 1 that represents the
importance of an entity in a text. We present here a method for computing this
score based on an in depth analysis of the discourse of the text and of the syntactic
structure of the individual sentences.
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8.1.3.1 Discourse segmentation

The discourse segmentation module, which we developed in earlier research,
hierarchically and sequentially segments the discourse in different topics and
subtopics resulting in a table of contents of a text (Moens, 2008). The table
shows the main entities and the related subtopic entities in a tree-like structure
that also indicates the segments to which an entity applies. The algorithm detects
patterns of thematic progression in texts and can thus recognize the main topic
of a text (i.e., about whom or what the text speaks) and the hierarchical and
sequential relationships between individual topics. A mixture model, taking into
account different discourse features, is trained with the Expectation Maximization
algorithm on an annotated DUC-2003 corpus. We use the resulting discourse
segmentation to define the salience of individual entities that are recognized as
topics of a sentence. We compute for each noun entity e, in the discourse its
salience (Sall) in the discourse tree, which is proportional with the depth of the
entity in the discourse tree -hereby assuming that deeper in this tree more detailed
topics of a text are described- and normalize this value to be between zero and
one. When an entity occurs in different subtrees, its maximum score is chosen.

8.1.3.2 Refinement with sentence parse information

The segmentation module already determines the main topic of a text. Since the
syntactic structure is often indicative of the information distribution in a sentence,
we can determine the relative importance of the other entities in a sentence by
relying on the relationships between entities as signaled by the parse tree. When
determining the salience of an entity, we take into account the level of the entity
mention in the parse tree (Sal2), and the number of children for the entity in this
structure (Sal3), where the normalized score is respectively inversely proportional
with the depth of the parse tree where the entity occurs, and proportional with
the number of children.

We combine the three salience values (Sall, Sal2 and Sal3) by using a linear
weighting.

sal(e;) = anSall + axSal2 + asSal3

We determine coefficients for these three values on a held-out corpus, and set them
to a1 = 0.8, as = 0.1 and a3 = 0.1.
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Cleveland Cavaliers’ LeBron James (23) shoots
between Detroit Pistons’ Richard Hamilton, left,
and Chauncey Billups late in the fourth quarter
of the Pistons’ 84-82 win in a second-round
NBA playoff basketball game Friday, May 19,
2006, in Cleveland. The series is tied at three
games each.

LeBron James | 0.83 | Chauncey Billups | 0.39 | Richard Hamilton | 0.31
Cavaliers 0.17 Cleveland 0.13 Pistons 0.10

Figure 8.2: Image-text pair with automatic extracted entities and predicted
probabilities.

8.1.4 Appearance model

The appearance model for entities combines the visualness and salience measures.
We want to calculate the probability of the occurrence of an entity e;,, in the
image, given a text ¢, P(esn|t). We assume that this probability is proportional
with the degree of visualness and salience of ¢;,,, in ¢t. In our framework, P(e;,|t)
is computed as the product of the salience of the entity e;,, and its visualness
score, as we assume both scores to be conditionally independent, given the value
of e;.

app(e;) = sal(e;) x vis(e;)

8.1.5 Evaluation of the appearance model

In this section we evaluate our approach on a real world corpus of near-parallel
image-texts pairs.

8.1.5.1 Data set

We use a parallel corpus? consisting of 100 images-text pairs that were randomly
selected out of a larger corpus of 1700 text pairs. The images and their captions

4We thank Yves Gufflet from the INRIA research team (Grenoble, France) for collecting this
dataset.
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are retrieved from the Yahoo! News website® and are similar to the “Faces in the
wild” benchmark corpus (Huang et al., 2007). The captions will in general discuss
one or more persons in the image, possibly one or more other objects, the location
and the event for which the picture was taken. An example of an image-text pair
is given in fig. 8.2. Not all persons or objects who are pictured in the images are
necessarily described in the texts and vice versa.

Every image-text pair is annotated by one annotator, who has labeled the entities
(i.e. persons and other objects) that appear in the text, the entities that appear in
the image and the entities that appear in both. Fig. 8.2 shows an example image-
text pair, where "Lebron James" “Chauncey Billups” and “Richard Hamilton” are
the only entities that appear both in the text and in the image. On average the
texts contain 15.04 entities, of which 2.58 appear in the image.

8.1.5.2 Experiments

We test a number of methods on the Yahoo! News corpus (table 8.1), using
combinations of the methods discussed. A first method (Ent) uses only the entity
detection, achieving a precision of 15.62% and recall of 91.08%. The low precision
is caused by the fact that many entities in the texts are not visible in the image.
Although these results indicate that this is a very naive baseline, it is in fact
used quite often (see section 8.3). The second test (Ent+Vis) uses the selected
entities together with a static cut-off value® on the visualness measure, achieving a
precision of 48.81% and a recall of 87.98%. Although this method is already more
successful in selecting the right entities is still suffers from the problem that also
entities in the text that could be present on the image, are not necessarily so.

The third method (Ent+Sal) uses the entity selection together with a cut-off on the
salience measure, which results in 66.03% precision and 54.26% recall. This shows
that also the salience measure alone is not sufficient to select the correct entities.
Our final method (Ent+ Vis+Sal) combines entity detection with a static cut-off
value of the combined visualness and salience measures. This method achieves
70.56% precision and 67.82% recall, which is the best result of the evaluated
systems, both in terms of precision and fl-measure (69.39%).

Although the presented methods are quite successful in annotating the images
without an analysis of the images themselves, it is interesting to see what are
the most important factors for the incorrect annotations. We have manually
evaluated the performance of the different techniques on this corpus. Both named
entity recognition and part-of-speech tagging were quite accurate with 93.37%
and 98.14% precision and 97.69% and 97.36% recall respectively. The visualness

Shttp://news.yahoo.com/
6All cut-off values in this section were manually selected based on a small set of held-out
annotated examples.
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precision | recall | Fl-measure
Ent 15.62% 91.08% 26.66%
Ent+Vis 48.81% 87.98% 62.78%
Ent-+Sal 66.03% 54.26% 59.56%
Ent+Vis+Sal 70.56% 67.82% 69.39%

Table 8.1: Evaluation of different methods for automatically annotating entities
in images, using entity recognition (Ent), the visualness (Vis) and salience (Sal)
measures, and combinations hereof.

“African violets (Saintpaulia ionantha) are small, flowering
houseplants or greenhouse plants belonging to the Gesneriaceae
family. They are perhaps the most popular and most widely grown
houseplant. Their thick, fuzzy leaves and abundant blooms in soft
tones of violet, purple, pink, and white make them very attractive.
Numerous varieties and hybrids are available. African violets grow
best in indirect sunlight.”

Figure 8.3: Example section of the plants corpus.

measure (with static cut-off) has an accuracy of 79.56%, where the errors are
mainly caused by incorrect word sense disambiguation (63.10%) and in a lesser
extent by the distance measure (36.90%). We did not evaluate the salience measure,
since it is not trivial to exactly pin-point the most important entities in a text. For
an evaluation of the discourse segmentation module we refer to (Moens, 2008).

8.2 A corpus based visualness measure

The work described in this section is joint work with Erik Bowy and Marie-Francine Moens.

We extend the visualness measure defined in the previous section. We make two
extensions, first we perform a study of techniques to compute this visualness
using corpus based association techniques. Secondly we compute the visualness
of entities and attributes, where attributes are usually expressed by adjectives,
such as “white”, “small”’, and “wooden”. We first discuss corpus based association
techniques (section 8.2.1) and an extension of the previously defined WordNet
similarity for adjectives (section 8.2.2). These two techniques are then combined
(section 8.2.3) and evaluated (section 8.2.4).
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“Rebirth refers to a process whereby beings go through a succession of
lifetimes as one of many possible forms of sentient life, each running from
conception to death. It is important to note, however, that Buddhism
rejects concepts of a permanent self or an unchanging, eternal soul, as it
is called in Christianity or Hinduism. [...]”

Figure 8.4: Example section of the religion corpus.

8.2.1 Corpus-based association techniques

Assocation techniques provide methods to decide whether two observations occur
more frequently together then would be expected due to chance. Popular measures
are the chi-square metric and the likelihood ratio (Dunning, 1993). Several
researchers have used these techniques to find word collocations (e.g. “the red
cross”, “the white house”) (Dunning, 1993; Smadja, 1994), for automatic lexicon
construction (Roark and Charniak, 1998) or for classification of words along a
certain dimension (Turney, 2002).

We have downloaded a collection of descriptions of the appearances of flowers and
plants, which can be considered to contain mostly visual entities and attributes (
plants corpus, figure 8.3) and all articles in the English wikipedia on religion, which
can be considered to contain mostly non-visual entities (religion corpus, figure 8.4).
We then use the x2-test (Chernoff and Lehmann, 1954) to decide whether a word
is should be considered visual or not. More specifically we compute the y? value
and consider all words (both nouns and adjectives) above a certain threshold to
be visual.

8.2.2 WordNet similarity for adjectives

Previously we have used WordNet to compute the visualness measure for entities.
For adjectives we use a similar approach but have to use a different distance
measure since WordNet does not define a hypernym /hyponym relation between
adjectives. In stead we use the similarity measure of Lesk (1986), where the
similarity between two synsets is defined as the overlap between the words in
the textual descriptions of these synonyms. As for the entities we pick 25 seed
adjectives and manually set their visualness to 0 or 1.

8.2.3 Combining association techniques and WordNet distance

The corpus based association metric gives a list of adjectives and nouns that are
ranked according to y2-value, where words that have are higher ranked can be
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“These small sculptures depict two identical human figures. The
wooden bodies are weathered brown and the hair is faded blue.
Both sculptures have a round base about one inch high. The feet
are large and flat, with grooves cut into the front to distinguish
toes. The legs are short [...]”

Figure 8.5: Example of the art corpus.

expected to be more visual. We use this fact to automatically select the seed
synsets used for the WordNet similarity measure. For both nouns and adjectives
we select the 13 highest (e.g. with large, positive x? value, thus having a positive
correlation) and 12 lowest ranked synsets (e.g. with low, negative x? value,
thus having a negative correlation) and set their visualness respectively to 1 and
0. The seeds are thus chosen automatically, making the visualness measure an
unsupervised metric.

8.2.4 Evaluation of corpus based visualness

We evaluate the proposed techniques on a third corpus, that contains a mix of
visual and non-visual entities and attributes. The corpus consists of a collection
of descriptions of works of art together with an elaborate history of the object and
the artist, and will henceforth be known as the art corpus (figure 8.5). A collection
of these descriptions are manually annotated where every attribute and entity is
labeled as visual or non-visual.

For every technique we manually set a static cut-off value on a small number of
held-out descriptions. Table 8.2 shows the results for the different methods. We
first see that the corpus based method performs much better for attributes than
for entities, which is mainly caused by a low recall on the entities. We hypothesize
that this can be attributed to the fact that attributes are more generic and can
thus more easily be transferred to a different corpus. A second observation that
can be made from table 8.2 is that the WordNet based method outperforms the
corpus based method for entities but performs worse for attributes. Finally we
see that the automatic selection of seed sets improves the results of the WordNet
based method.
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precision recall Fl-measure
attribs ents attribs ents attribs ents

corpus 88.26% | 81.71% | 80.15% | 50.95% | 84.01% | 62.76%
wordnet 81.13% | 82.02% | 50.15% | 62.02% | 61.98% | 70.63%
combination | 87.80% | 82.67% | 53.25% | 66.22% | 66.30% | 73.54%

Table 8.2: Evaluation of different methods for automatically annotating entities
(ents) and attributes (attribs) in images, using association techniques on
(corpus), WordNet similarity (wordnet) and the combination of these techniques
(combination).

8.3 Related Research

In recent years many researchers have worked on combining information found in
images and associated texts. We limit our review to research that uses associated
natural language texts such as captions or transcripts, ignoring approaches that use
manually annotated keywords, since we are interested in methods to automatically
select words that describe the image.

Named entity recognition is used by researchers interested in combining names
in texts with faces in images. Most of these researchers assume that all persons
are equally likely to appear in the image (Yang et al., 2004; Ozkan and Duygulu,
2006; Guillaumin et al., 2008). Other researchers acknowledge that this can be
improved by having a measure that captures how likely people to appear in the
image. Yang et al. (2005) select only persons that perform a monologue speech
since these are more likely to appear in the video, while Satoh et al. (1999) use a
rudimentary approach to discourse analysis that takes into account the position of
the person in the transcript and the verbs that co-occur with this person, where
a small manual selection of verbs is given a high score and all other verbs a lower
score. Regretfully these two publications do not evaluate their approaches. Berg
et al. (2004) construct a more elaborate context model to determine which persons
appear in the image. This model includes the part-of-speech tags on both sides of
the person name, the distances to the nearest special token (“”, “., “(*, «)”, “(L)",
“(R)” or “(C)”), and the location of the name in the caption. The parameters
of this model are then learned in an unsupervised manner, which results in a
classifier that has an accuracy of 84%, where a baseline approach that assumes
that all persons appear in the image achieves an accuracy of 67%. Contrary to our
research this method takes into account highly corpus specific context cues and
does not consider objects other then persons. Furthermore errors in the named
entity recognition system are not taken into account in the evaluation, although
the previously reported accuracy of the employed recognizer was between 80% and
90% (Cunningham et al., 2002).
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Other researchers do not limit the text analysis to person names, although also
here typically word selection is considered a preprocessing step and is given little
attention. Jain et al. (2007) for example do not perform word selection, Mori et al.
(2000) select nouns and adjectives when they occur above a certain frequency in
the entire corpus, Westerveld (2000) lemmatises all words in the captions and
uses words that occur at least in two different documents, Amir et al. (2005)
perform stop-word removal and Porter stemming and assign ¢ f xidf weights to the
remaining words and Westerveld et al. (2005) use a (retrieval) language modelling
approach that interpolates a ML model for the text associated with the shot, with
one associated to the scene, the video and the collection. None of these publications
evaluate word selection separately.

Following our publications (Deschacht and Moens, 2007; Deschacht et al., 2007)
we have seen more research on this task. Kliegr et al. (2008) perform entity
detection in a similar manner as presented here, however a more advanced method
is employed to map person names to WordNet. Where we mapped all person
names to the synset representing a “human being”, the authors perform a more fine-
grained mapping where for example “David Beckham” is mapped to “footballer”.
This is accomplished by automatically learning hypernym relationships from a
large corpus using Hearst-style patterns (Hearst, 1992), with an accuracy of 85%.
The synsets are then manually classified according to visualness. Leong and
Mihalcea (2009) have adapted our work to automatically annotate all elements
of an image, and not only entities. They learn a visualness measure from a large
corpus and modify the salience measure to include two other clues: semantic
cloud, which captures which words are more “central” to a certain topic and
lexical distance, which is the distance of words to the image. They achieved an
Fl-measure of 54.21% on a corpus of 180 images and corresponding web pages,
compared to a tf * idf baseline of 41.48%. Xia et al. (2009) aim at annotating
images with full sentences. They use the visualness measure together with a latent
semantic analysis of words and features extracted from the image to generate a
set of candidate keywords for a given image. From a large corpus, all sentences
that contain at least two of these keywords are ranked according to frequency on
the world wide web. The accuracy of their method was not evaluated.

8.4 Applications of the appearance model

In this section we see two applications of the appearance model. We will see how it
can be used to align names and faces (section 8.4.1) and to improve image retrieval
(section 8.4.2).
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8.4.1 Alignment of names and faces

The work described in this section was performed by Phi The Pham, Marie-Francine
Moens and Tinne Tuytelaars.

One of the goals of the appearance model is the creation of annotations for images
that can be used to train an image classifier or detector. In this section we discuss
work performed in (Pham et al., 2010) that learns from a corpus of images with
associated captions, a probabilistic alignment of names in the captions with faces
in the image.

The “Labeled Faces in the Wild” dataset (Huang et al., 2007) is similar to the
dataset discussed earlier and contains 11820 images with their captions that have
been downloaded from a Yahoo! news. Typically an image contains multiple
faces, the caption contains multiple names, and not every face in the image has a
corresponding name in the caption and vice versa. Pham et al. (2010) developed
an iterative EM procedure to align every face with it’s correct name. This is a non-
trivial task since faces contain a lot of variation due to facial expressions, pose and
lighting conditions, and also person names are used in different ways (e.g. “George
W. Bush”, “President Bush” and “George Bush”).

First all names in the captions are detected (using the previously described named
entity recognizer) and clustered based on automatically detected coreference chains.
The faces are automatically detected using a face detector and clustered based on
a cosine metric on the parameters of a 3D morphable face model. An initial
alignment of names and faces is learned from co-occurrence of the face clusters
with the name clusters in the dataset. This estimate is iteratively updated using
an EM-algorithm.

Although the visualness measure is not used (since persons receive a visualness
score of 1), the experiments performed show that approaches that employ the
salience measure consistently outperform approaches that assume that all persons
in the caption are equally likely to appear in the image. The best system tested
uses the salience measure for the names and the namedness for the faces, which
estimates the probability that a face will be described in the text. This system
achieved an F1l-measure of 72.23% on a large test set of 10977 image-text pairs.

8.4.2 Textual retrieval of images

In this section we discuss an application of the appearance model: the retrieval of
images from the world wide web. Our goal is to find the best images of a given
entity (or entities) in a collection of pictures that have associated texts in the form
of descriptive sentences, where every picture can depict possibly multiple persons
or objects. Although most research on image retrieval is on an automatic analysis
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of the image (Datta et al., 2008), commercial search engines today still use the
text surrounding the image as a major clue to the image’s content. Since we have
found that the appearance model offers a reasonable accurate representation of
the image content, it is interesting to see to what extent this model can be used
for the retrieval of images.

In section 8.4.2.1 we integrate the appearance model in a retrieval model, which
we evaluate in section 8.4.2.2.

8.4.2.1 Probabilistic cross-media retrieval model

Statistical language modeling has become a successful retrieval approach (Croft
and Lafferty, 2003). A textual document is viewed as a model and a textual
query as a sequence of words randomly sampled from that model. Let the query
be composed of one or more query word ¢;, which are proper names or nouns
representing a person or object. The language model for retrieval then computes
the probability that the query [g1...¢m] is generated by image I;

P(qy, e mll;) = [ J((1 = M P(@i] ;) + AP(¢i|C)) (8.1)
i=1

where C represents the collection of documents and A is a smoothing factor between
0 and 1. The probability P(¢;|C) is called the corpus model and assigns a non-zero
probability to every word in the corpus proportional to the relative frequency of
that term. The probability P(¢;|I;) is the probability of the image I; generating
the query term ¢;. We estimate this probability from the text 7} associated to
the image (e.g. the captions), and consider a number of methods. A first method
(bag-of-words, BOW) estimates this probability as

Pgow (¢i|lj) ~ n(g:)

where n(g;) is the number of occurrences of word ¢; in T; and k ranges over all
words in Tj. A different method takes into account whether a word expresses an
entity (or is part of a multi-word expression of an entity).

P(g|l;) n(q;) *w(e;) if qexpressesanentitye;
a otherwise

Here w(e;) is a weight assigned to the entity e; expressed by the word ¢;. A first
model (BOE) assumes that all entities are weighted equally, i.e. w(e;) = 1. We
then define a number of models that set the weight respectively to the visualness
(VIS), to the salience (SAL) or to the appearance score of that entity (APP). We
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Figure 8.6: Ground truth ranking (left to right, top to bottom) for two example
queries. Images are ranked higher if they contain fewer entities and if the queried
entity is more prominent in the image. Images in the dataset are all approximately
the same size and this factor is not taken into account for the ranking.

have adapted the Lemur toolkit” to include these retrieval models, using a A equal
to 0.1.

8.4.2.2 Evaluation of the appearance retrieval model

Dataset Because of the lack of a standard dataset that fits our tasks and
hypotheses, we annotated our own ground truth corpus. We randomly select 700
image-text pairs from the Yahoo! news corpus discussed in section 8.1.5.1. In this
selection, many images picture only a single person or object. This makes retrieval
easy, since these images should be ranked at the top, and we refer to this dataset
as the EASYSET. From this set we select a subset of pictures where three or more
persons or objects are shown, which varying degree of prominence in the image.
We call this dataset that comprises 380 image-text pairs the DIFFICULTSET.
Tests on the latter set allows us to better understand the behavior of our different
indexing methods when many persons or objects with varying degree of prominence
are shown in the photographs.

We have randomly generated a number of queries as follows: assuming that the
queries reflect the corpus used for retrieval, we select 79 images from this corpus,

“http://www.lemurproject.org/
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| [ BOW | BOE | VIS | SAL | AP |
EASYSET 58.12% [ 62.46% | 55.62% | 56.25% | 59.28%
DIFFICULTSET | 70.48% | 73.46% | 71.16% | 69.54% | 71.70%

Table 8.3: Results in terms of mean average precision for the ranking models based
on the different text representations for the EASYSET and DIFFICULTSET.

and for every selected image create a query by concatenating all entities in this
image. In this way we obtained 53 queries that contain one name of a person or
object, and 26 queries with two entities (23 queries with two person names and 3
queries with a person and object name). For every query we ranked all images in
the corpus that contained these entities according to the prominence of the entities
in the images. Rankings for two examples queries can be see in figure 8.6.

Experiments For every query we rank all documents in the collection using the
methods defined above, and compare the automatic rankings with the manual
rankings using the mean average precision metric (table 8.3).

First, we see that the appearance measure (AP) improves the retrieval model
compared to the baseline (BOW) method. This measure determines approximately
how many entities in a given text are likely to appear in the image, and thus to
create a more fine-grained ranking (since images with a small number of entities are
preferred above images with a large number of entities). However, disappointingly
this method, and all other methods are outperformed by the bag-of-entities (BOE)
method, showing that the prominence is sufficiently captured by the maximum
likelihood estimation of the term occurrence in the text. This is caused by a
strong correlation between the length of a caption and the number of entities
shown in the corresponding image. Another important factor is that the queries
by definition only contain entities that can be perceived on the images, thus
making an automatic analysis of the visualness of entities superfluous. Also the
occasional misclassification of entities by the appearance model (see table 8.1.5),
reduces the accuracy of the automatic ranking. These unexpected results show
that information retrieval has different requirements then information extraction,
and that an improved method for the latter does not necessary improve the former.

8.4.2.3 Related work

Image retrieval is a well studied problem with a large body of research, we refer
to Smeulders et al. (2000) and Datta et al. (2008) for extensive overviews. Most
research however focuses on content-based image retrieval, i.e. on methods that
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perform an automatic analysis of the images while only few research of using
associated natural language texts has been performed.

Smeaton and Quigley (1996) and Flank et al. (1995) develop retrieval models
for image captions based on respectively a WordNet distance or on finite state
machines representing the syntactic structure of a sentence. These approaches
should however be considered generic information retrieval models since they are
not designed specifically for image retrieval. The WebSEEk search engine Chang
et al. (1997) uses a manual classification of terms in associated web-pages as
visual or non-visual. The visual terms are further manually mapped into different
categories. The performance of this method is not reported.

The ImageClef 2009 shared task on image retrieval (Paramita et al., 2009)
compares a number of systems that perform image retrieval on a corpus of almost
500.000 images with associated captions, similar to the corpus employed here.
Given a query consisting of textual keywords and an example image, the systems
performed a ranking of all image-text pairs in the system. All the participating
systems used standard retrieval models to compare the key words with the captions,
which suggests that for this type of data a more elaborate analysis of the captions
does not improve retrieval performance.

The experiments performed by Xia et al. (2009) suggest that an analysis of
language is necessary however when the texts associated with the images are
longer and contain more words that do not describe the image. Xia et al. (2009)
performed experiments where, for a given textual query, a ranking was created of
images based on text extracted from the containing web page. They found that
a retrieval model that uses the visualness measure outperforms a ¢f * idf based
language model by 15% to 20%.

8.5 Conclusion

In this chapter we have introduced the appearance model, consisting of an analysis
of the text combined with external knowledge. We have designed a method to
capture the salience of the entities, based on analysis of the discourse of the text
and of the syntactic structure of the sentences. We have combined this with a
new model of the visualness of the entities, that employs a distance metric defined
on WordNet together with a small number of seed synsets. We have shown that
this method can predict which entities and attributes are present in an image,
without performing an analysis of the image itself. We have then described two
applications of this model: the alignment of names and faces and image retrieval.
It was shown in these experiments that the salience model helps to accurately
align names and faces by indicating which persons are more likely to appear in
the image. We then saw that, although existing retrieval models are sufficient for
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short captions, the visualness model did help for text pages that contained longer
texts with more entities not visible in the image.



Chapter 9

Automatic annotation of
video

In the previous chapter we have discussed the difficulties faced by automatic
methods for the analysis of images, and how automatically generated annotations
from associated texts can improve these methods by providing a weak labeling.
The analysis of video data however provides even greater difficulties for automatic
methods. In this chapter we discuss methods that automatically generate
annotations for video data using associated texts or transcripts. We focus on
two types of annotations: visual actions and their semantic roles (section 9.1)
and locations of scenes (section 9.2). These annotations can then be used to
help methods that perform an automatic analysis of the video. We conclude this
chapter in section 9.3.

9.1 Visual action annotation

In this section we investigate methods for the automatic annotation of actions
in video. To this end we apply the previously developed semantic role labeling
system to semantic roles of visual verbs. We introduce this task in section 9.1.1
and describe the role definitions in section 9.1.2. We evaluate the dataset used
in this application in section 9.1.3 and evaluate it in section 9.1.4. Finally we
describe its use in automatic annotation in section 9.1.5.
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Movement A person moving voluntarily from one position to another (“Buffy walks in the
room”).

Object manipulation A person manipulating or moving an object (“.. Buffy opening the
refrigerator”).

Body position A verb describing the position or pose of the body of a person (“.. Buffy leans
forward..”).

State A verb that describing the stationary state of an object or person, different from the body
position (“... Dawn is chained to the wall.”).

Express emotion A person expressing some emotion (“Dawn shrugs in embarrassment”).
Fighting Actions performed by a person in a fight (“... Harmony backhands Anya”).

Camera action The camera zooming in or out or moving with respect to the scene (“The
camera pans across a bedroom”).

Visual Any visual verb that does not belong to one of the above categories (“.. Buffy talking
to Giles”).

Table 9.1: Semantic frames for automatic video annotation.

9.1.1 Introduction

Action detection and classification in video is a hard task that has only recently
been approached outside laboratory conditions, and is typically still limited
to a small number of actions (Laptev et al., 2008). Furthermore the manual
segmentation and labeling of actions in video is a labour-intensive and error-prone
task. Following our work on automatic image annotation in the previous chapter,
we would like to develop methods for the automatic annotation of actions and
their arguments (i.e. semantic roles) in videos. We are hereby only interested in
visual actions and arguments, i.e. actions and arguments that can be perceived
in a single frame or in a sequence of video frames. This work will show that we
can easily adapt our semantic role classifier to different sets of semantic roles and
frames.

9.1.2 Semantic roles

The PropBank semantic roles described in section 4 define a set of semantic roles
and a set of senses for every verb separately. This definition is however not very
useful for automatic image annotation since typically it is required to generalize
across different verbs. We thus define a new set of semantic frames that are
motivated by the requirements of automatic image analysis: all verbs labeled with
an identical frame should have a more or less similar wvisual appearance in the
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Agent The person or object performing the action (“Buffy walks in the room”).

Causative agent The person or object that force another person or object into the action
(“Buffy pushes her back”).

Patient The person or object forced into the action (“Buffy pushes her back”).

From position The initial position before movement (“Buffy picks up a banana from a bowl
of fruit”).

To position The final position after movement (“she crashes to the floor”).
Emotion The emotion that is expressed (“Buffy’s face looks very peaceful”).

Negation The word indicating negation of a certain action (“Willow does not notice her
expression”).

Table 9.2: Semantic roles for automatic video annotation.

video, and vice versa. Furthermore the definitions should reflect the actions that
occur frequently in the dataset used and should include actions of the camera (e.g.
“zoom”), which is potentially useful for visual action detection methods. In dialog
with researchers more experienced in video analysis and taking into account the
dataset, we have created a new set of frames (listed in table 9.1) and semantic
roles (table 9.2).

9.1.3 Dataset

We apply the proposed semantic frames and roles to the transcripts of a popular
action series, Buffy, the Vampire Slayer. This American TV series stars Buffy
Summers and her friends as they fight vampires and other demons. It offers
an interesting testbed for our automatic annotation techniques: because of its
large popularity, fans have created transcripts for all episodes that offer detailed
descriptions of the video and the dialog. These transcripts contain information
on the actions of the characters, their emotions and of the locations of the scenes.
This information is however all embedded in running text and need to be extracted
with information extraction techniques. Also the video offers a realistic testbed
for video analysis because of the challenging lightning conditions, frequent motion
blurring and variations in pose and camera position.

A human annotator has manually annotated all verbs and their semantic roles in
episodes 1 to 9 of the fifth season, totaling 4340 frames with 12754 roles. These
annotations have been checked for inconsistencies by a second annotator.
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| model | %P | %R | %F1 |

generative 70.36 | 63.61 | 66.79
discriminative | 76.77 | 74.75 | 75.85

Table 9.3: Results for semantic role detection for visual verbs.

Shot of Buffy opening Obj. mani. opening

the refrigerator and Agent  Buffy
taking out a carton of Patient the refrigerator
milk. Buffy sniffs the Obj. man. taking out
milk and puts it on Agent  Buffy

the counter. In the Patient a carton of milk
background we see Obj. man. opening
Dawn opening a Agent  Dawn
cabinet to get out a Patient a cabinet

box of cereal. Buffy

turns away. Agent  Buffy

Movement turns away }

Figure 9.1: SRL result (middle column) for an example scene, showing the
transcript (left column) and video frames (right column).

9.1.4 Evaluation

The transcripts were preprocessed by removing all HTML formatting. We have
also removed all dialog, since this contains very little information on the actions of
the characters. The descriptive text was then split in sentences that were part-of-
speech tagged (Mikheev, 1997) and parsed (Charniak, 1997). We created features
from these tags (see section 4.3.1), trained our generative and discriminative
semantic role classifiers (see section 4) on 8 episodes and tested on the remaining
episode. Table 9.3 shows that also here the discriminative model outperforms the
generative model, confirming our results in the previous chapters. We also show
some examples of automatically detected semantic frames in figure 9.1. We see
how they accurately describe the actions in the video.

We would like to emphasis again that the SLR systems and features applied here
are exactly the same as used on the PropBank dataset, showing that our approach
is very flexible and can be applied rapidly on new datasets.

9.1.5 Automatic image annotation

We have described semantic role detection in text for visual actions. Given a text
describing an image or video, we can use the developed system to automatically
generate annotations that can be used in image analysis. Jie et al. (2009) have used
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our system to successfully detect the actors of action verbs in texts describing news
images. From these automatic annotations they learn associations between names
and visual face descriptions and between action verbs and visual pose estimates.
The learned associations using the automatically detected actors are appr. 75%
correct for both name-face and action-pose associations, which compares favorably
to associations learned with manually annotated actors, resulting in appr. 80%
accuracy for name-face and appr. 83% accuracy for action-pose associations.

In the future we would like to use the annotations generated by this SRL classifier
for analyzing other actions, such as emotions or movements.

9.2 Scene location annotation

The work described in this section is joint work with Chris Engels, Jan Hendrik Becker,
Tinne Tuytelaars, Marie-Francine Moens and Luc Van Gool

In this section we consider the problem of annotating scenes in a video with
information extracted from an associated text. We introduce this problem in
section 9.2.1 and describe how we use a multimodal approach to scene segmentation
(section 9.2.2) and scene annotation (section 9.2.3). We evaluate our approach in
section 9.2.4.

9.2.1 Introduction

We consider a video (e.g. a motion picture or soap series) that has an associated
text (e.g. a transcript) that describes the content of the video. From this text, we
aim to extract the location of a particular scene in the video. These annotations
could be presented to an end-user, used for a textual search in a video-archive, or
as a weak annotation for visual scene classifiers. An important difficulty is that
the number of locations is not known beforehand and that many locations will
only occur in a single video. We thus need a method that is able to dynamically
determine the number of and textual descriptions for locations in a new video.
We hereby rely on information extraction methods that extract the location
descriptions from the associated texts. Furthermore we develop a method to
propagate location annotations from one scene to scenes that are visually similar.

In this work we use transcripts for an action series that is created by fans (see
section 9.2.4). These transcripts contain descriptive text together with the dialog.
Figure 9.2 gives an overview of our approach. We begin by roughly aligning the
transcript to the video using subtitles with approximate timing information. We
then split the video into scenes using a text classifier and shot cut detector. For
every scene we extract the location phrases and use these to train a latent Dirichlet
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Transcript Subtitles Video

DAWN: Willow's theawesomest
person.

00:09:05,570 --> 00:09:09,799
Willow's awesome. She's the
only one | know who likes
school as much as me.

Cut back to Dawn in pajamas,
now lying on her bed writing
in the diary with a smile.

DAWN: She's the only one | know
who likes school as much as me.

Cut back to the street.
Dawn smiles at Willow, then
the camera pans over to Tara.

00:09:09,889 --> 00:09:12,240
Even her friends are cool.

= i 1 = -
DAWN: Even her friends are cool! app iming

scene cut classi @ut detection
Scenes
location det@ ' %3

=

LDA Visual similarity
Annotations
Q> y /J°L } N
street bedroom street
' uv

Figure 9.2: Overview of our approach

allocation topic model. The final annotations are then chosen as the phrase that
is most likely given the topic distribution, reweighted by visual similarity.

9.2.2 Scene Segmentation and Alignment

We define a scene as a consecutive sequence of shots that are set in the same
location. Scenes are used as the basic units that are annotated in our work. To
segment the video into scenes we use a multimodal approach, combining a shot
cut detector with a text classifier.

9.2.2.1 Coarse Alignment

We first create an approximate alignment of video and text. The transcripts
used here do not contain any timing information. To obtain approximate timing
information, we align the dialog in the transcript with the subtitles extracted
from the video, using the time-warping approach described by Everingham et al.
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(2006) (Sankar K. et al. (2009) used speech recognition for the same purpose). The
timing information from the subtitles can thus be transferred to the dialog in the
transcripts, which also gives an approximate timing of the descriptions, since these
are interwoven. This timing is however only approximate, and becomes worse in
scenes with limited speech. We further refine this alignment in section 9.2.2.4.

9.2.2.2 Learning scene cuts in the text

The descriptive part of the transcripts often contains strong cues for the start of
new scenes, e.g. “Fade in on a beach, daytime.”. The dialog part does not contains
these clues, and we thus discard the spoken lines. We learn a sentence classifier
that classifies every sentence as describing a transition from one scene to another
(e.g. “Cut to the kitchen”).

We preprocess the text by dividing the textual descriptions into sentences, tokenize
the sentences into words and perform part-of-speech tagging (using the LTPOS
tagger (Mikheev, 1997)). We then extract the following features

Unigram Every word token in the sentence (e.g. “buffy”).

Bigram Every consecutive sequence of 2 tokens in the sentence (e.g. “buffy running”).
Trigram Every consecutive sequence of 3 tokens in the sentence (e.g. “buffy running throug
POS Part-of-speech tags of all words in the sentence (e.g. “VB”, “NP”).

POS+token Part-of-speech tag concatenated with the word token (e.g. “NNP _buffy”).
Position The position of the sentence in the text, given by the character pointer.

This position is binned in 20 intervals of equal width.

We perform experiments with a generative and discriminative classifier, and find
the optimal combination of features for every classifier. We use the classifier to
compute for every sentence w = {ws, ..., w,} of n words w a probability Pe,¢(w)
for the occurrence of a scene cut in this sentence.

9.2.2.3 Detecting visual shot cuts

We localize our scene cuts by detecting an associated shot cut in the video. Shot
boundary detection is fairly well-established, see e.g. Yuan et al. (2007) for a
comprehensive review. Our implementation uses a sliding window over color
histograms to compute a dissimilarity energy E..; based on y2-distance, followed
by local non-maximum suppression and thresholding.



128 AUTOMATIC ANNOTATION OF VIDEO

9.2.2.4 Refined scene cuts

As mentioned before, the alignment for text descriptions may be imprecise in
scenes with little dialog. To minimize this error, we need to refine the alignment
of sentences near a scene cut boundary.

We first quantify the error of our initial textual and visual cuts relative to ground
truth using our training episodes. We assume the distribution of the timing
errors in both text and visual cuts is Gaussian, and we learn the mean offsets
Ihtext, via and standard deviations oiext, ovig Of the text and video, respectively.
To determine the exact frame of the scene cut, we define energy terms for each
modality. For a frame k, the text cut energy Fiext is

Etcxt(k) - leaX Pcut(wi)-/\/(tthi + ,UJtcxt)7 Utcxt) (91)

where P(w;) is the probability of a cut occurring at sentence w; and N (x|u, o) is a
Gaussian distribution evaluated at z. t; is the initial time estimate of sentence wy;,
which is chosen as the end time of the subtitle occurring just before this sentence.
Similarly, we define the video cut energy F,;q as

Eyia(k) = max Eeut(Ci) N (te|(ti + prvia), ovid) (9.2)
for a detected cut C; at time t;.

Our final cuts are found by performing local non-maximum suppression and
thresholding on the joint energy

Erv (k) = Eiext(k)Evia(k) (9.3)

Figure 9.3 shows an example of the energies evaluated over some frames, where a
red X denotes a ground truth cut.

9.2.3 Location annotation

For every automatically detected scene we want to generate a text phrase that
describes the location of that scene. Here for we use a topic model that uses
extracted locations from the text together with a visual similarity of the video
scenes. We start by describing the location classifier.
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Figure 9.3: Example of cut energy over time. The blue line corresponds to Fyeyt,
green to F,;q, and black to Epy. A red X denotes a ground truth cut.

9.2.3.1 Identifying location phrases

We want to determine for all phrases in the text, whether they describe a location
or not. We manually annotate the locations in a number of transcripts, and assign
a label to all words: bLoc, iLoc, oLoc for respectively the first word in a phrase
describing a location, other words in this phrase or words outside these phrases.
We want to compare a generative and a discriminative sequential classifier and
train a hidden Markov model or maximum entropy Markov model (Ratnaparkhi,
1996) on manually annotated episodes and use these to label unseen episodes. For
every word we generate the following features:

Token The word token (e.g. “bedroom”).

POS Part-of-speech tag of the word (e.g. “DT”).

Scene cut probability The binned probability of the scene cut classifier for that
sentence.

Possessive Boolean value indicating whether this word is in a possessive form
(e.g. “Joyce’s”).

Previous token The word token that occurs just before this word.
Next token The token that occurs just after this word.

Path to top The path from the root node of the parse tree to this word (e.g.
root}deplnmod|pmod).
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Hidden word A probabilistic feature representing the hidden word distribution
as determined by the latent words language model.

Although not listed here, the hidden Markov and maximum entropy Markov
models also take into account the label of the previous word. We use these
classifiers to compute a probability P,.(w;_,, ) for every phrase w;_, ;.

9.2.3.2 Latent Dirichlet allocation

Many scenes do not mention the location explicitly, although the location could
be inferred by the description of other objects (e.g. “fridge” in the kitchen).
Furthermore, the textual descriptions of locations contain significant variation,
posing various problems for learning location labels for scenes. Problems arise
from synonyms and polysemes, where multiple phrases are used to refer to the
same location (e.g. “cemetery” and “graveyard”), or where different locations are
referred to by the same phrase (e.g. “the living room” refers to the living room in
two different houses).

We use latent Dirichlet allocation (LDA, Blei et al. (2003)) to address these
problems. LDA learns, from a corpus of documents, probabilistic topics that
capture soft clusters of words that occur frequently together. It is a generative
model of documents where the generative process is summarized as follows: for a
document d a multinomial mixture parameter 6 is first sampled. Then, for each
word w a topic z is sampled from the multinomial distribution and, the word w is
sampled from the multinomial word distribution conditioned on that topic. The
probability of a collection D of M documents is given by

M Ng
P(Dla,B) =[] / P(64]c) <HZP(zdi|0d)P(tdi|zdi, 5)) oy
d=1

=1 Zdi

where 64 is the topic distribution for a document d, t4; is the term on position
7 in document d and zg4; is the topic assigned to this term. LDA is trained on
this corpus by finding the parameters o and § that maximize the likelihood of
the model on the data. This model alleviates the aforementioned problems by
assigning synonyms to the same topic and assigning polysemous words to multiple
topics. Context words contribute to topics as well and as such can help to identify
the location in case of underspecification. In our work the documents correspond
to scenes, and we set the terms of a scene to all the extracted phrases from the
text of that scene.

To make sure that the learned topics reflect the different locations and not other
topics in the text, we assign a weight v(w}_,, | ;) to every sequence of words w;_,, ,,
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of length n. These weights reduce the influence of phrases that are not indicative
of location and force the topics to focus on location information. The parameters
« and (3 are then chosen to optimize

M Ny ,
Pl 8) = ] / P(04]) <HZP(zdiledw(wzi_nﬂ|zdi7ﬂ>“<W%nm) i,
d=1

=1 Zdi

We set the weight of a phrase to the probability of that phrase describing a location,
ie. v(wWi_, 1) = Pioc(Wi_, 1), as given by the location classifier described in the
previous section.

9.2.3.3 Visual similarity

Some scenes lack text that describes the location (nor describes other informative
objects), so their respective topic distributions will not be useful in generating an
annotation. In these cases, we can use visually similar scenes to propagate critical
words to the ambiguous scenes.

Given two scenes, we need to compute a measure for the visual similarity of the
scene locations. In the foreground of a typical scene, there are often one or more
persons present. The background may be cluttered, out of focus, sparsely detailed,
and occluded by people. Additionally, the camera perspective may be stationary,
move smoothly, or frequently cut away, potentially causing the background to
appear completely different from alternate viewpoints.

Persons themselves are not indicative of a certain location, as they may appear in
different locations. Therefore, we use the upper-body pose detector of Ferrari et al.
(2008) to excise them from the scenes as much as possible, prior to computing a
visual scene descriptor for the scene similarity measure.

Visual description Several methods exist for the description of the visual
appearance of a general scene. Local or GIST features (Oliva and Torralba, 2006)
are not suitable for our purpose, as we need a descriptor that does not encode the
scene in too much detail, but is rather robust against e.g. backgrounds being in
or out of focus. Therefore we convert the colors in the background of all videos
to the CIELab color space (Wyszecki and Styles, 1982) and cluster them in 32
clusters using k-means clustering. Every frame is then described by the ratio of
its background colors in every cluster.

Next, we cluster shots in each scene into a small number of distinct camera
perspectives, and store the mean histogram for each cluster along with the
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corresponding number of images. We use the self-tuning spectral clustering method
proposed by Zelnik-Manor and Perona (2004), which handles multiple scales of
clusters and provides a convenient way of selecting the optimal number of clusters.

Visual distance of scenes using EMD To estimate the distance between two
scenes s and s’ from the set S of all scenes we use a nested Earth Mover’s Distance
(EMD) approach (Rubner et al., 2000). EMD measures the distance between
two distributions of weighted clusters {(c1,w1), (c2,w2), ..., (¢n,ws)} by solving
a flow optimization problem using pairwise costs between clusters. There is no
requirement for each distribution to have the same number of clusters.

In our work shots are represented by weighted color clusters and scenes are
represented as weighted shot clusters. EMD is first used to compute a pair-wise
distance between shots, and these distances are used in a second iteration of EMD
to compute a distance EMD(s, s’) between scenes s and s’.

Finally, we convert these scene distances into a similarity matrix:
1
A(s,s') = exp (_X EMD(s, 5’)2> (9.4)

where A is a scaling parameter determined from the training data.

9.2.3.4 Updating the topic distributions

For scenes that do not contain enough words indicative of location, the topic
distributions obtained solely from the transcript are inadequate, despite the
reweighting. Therefore, inspired by the Mixture of Experts model (Jacobs et al.,
1991), we model an updated topic distribution P(zl|s) as a mixture of the original
topic distributions:

P(zi|s) = w(s,8)P(zils) (9.5)

s'eS

The mixing coefficients (s, s') are given by the normalized visual similarity A(s, s)
between scenes s and s':

Als, s")
ZS/ES A(S7 5/)

This effectively allows to propagate location labels between visually similar scenes.

m(s,s') = (9.6)

9.2.4 Experiments and evaluation

We evaluate our system on 4 episodes of Buffy the Vampire Slayer, for which
transcripts are readily available on the Internet (Twiz TV). These episodes
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| combination | %P | %R | %F1 |

best — bigram + W&P + position | 91.71 | 79.48 | 85.16
best 4 unigram 90.36 | 76.92 | 83.10

best - bigram 88.41 | 74.35 | 80.77

best + trigram 91.62 | 78.46 | 84.53

best + POS 90.17 | 80.00 | 84.78

best - W&P 88.70 | 80.51 | 84.40

best - position 90.47 | 77.94 | 83.74

Table 9.4: Accuracy of the discriminative scene cut classifier for different
combinations of features. + adds a feature, — removes a feature, POS is part-
of-speech tag, WP is the concatenated word token and part-of-speech tag and
position is the binned position of the sentence in the transcript.

provide a challenging validation for our system since the textual transcripts are
unstructured and contain a lot of variation, and the video has highly variable
lighting conditions, frequent motion blurring and many different locations. We
evaluate our system on episodes 1 to 4 of season 5. On average an episode has
appr. 53 scenes in appr. 20 different locations. Only a handful of these locations
are shared across episodes.

We evaluate the different parts of our system: scene cut detection (section
9.2.4.1), location detection (section 9.2.4.2), and the automatic annotations
(section 9.2.4.3).

9.2.4.1 Scene cut evaluation

We first perform an evaluation of the generative and discriminative scene cut
classifiers. We have manually annotated the scene cuts in the transcripts of 4
episodes and perform 4-fold cross validation, training the classifier on 3 episodes
and testing on the remaining episode. For every classifier we find the optimal
combination of features (table 9.4), which was bigram-+ W& P-+position for the
discriminative classifier and bigram+ WEéP for the generative classifier. Table 9.5
shows that the performance of the generative classifier is close to the performance
of the discriminative classifier. This differs from results in the previous chapters,
where discriminative classifiers significantly outperformed generative classifiers for
word sense disambiguation and semantic role labeling. Here however we face a very
small training set (3 episodes) on which generative classifiers will often perform
quite well, since they have a smaller variation then discriminative classifiers when
trained on a limited number of samples (Bouchard and Triggs, 2004).

The lower recall of the scene cut detectors is mainly caused by incorrect
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| classifier | %P | %R | %F1 |

discriminative | 91.71 | 79.48 | 85.16
generative 91.07 | 78.46 | 84.29

Table 9.5: Performance of the discriminative and generative scene cut classifiers
in terms of precision (P), recall (R) and Fl-measure.

Precision

L L L L L L L L L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Figure 9.4: Precision-recall of final scene cuts with fixed error margin of 12 frames.

classification of sentences that described the actors moving from one location to
another, e.g. “Buffy goes into another room...”, which are also considered scene
cuts because of the location change.

To find the combined scene cuts in video and text, we combine the probabilities
generated by the text classifier with the detected shot cuts in the video as
described in section 9.2.2.4. The resulting confidence values give the precision-
recall curve in figure 9.4. Many of the missed scene cuts are in areas with either
few text descriptions or dialog, leading to low cut probabilities or imprecise cuts,
respectively. We select a cut threshold with a high recall, since the visual update
step provides robustness to oversegmentation.

9.2.4.2 Location detection evaluation

In this section we evaluate location detection in text. As described in section
9.2.3.1 we perform experiments with two classifiers, a generative hidden Markov
model and a discriminative maximum entropy Markov model. For both models we
perform 4-fold cross validation on 4 manually annotated episodes. We first find the
optimal combination of features (table 9.6), which was token—+cut_prob-+previous
word + next word+hidden word for the HMM and token + POS+ cut_prob +
possessive + previous word + next word—+hidden word for the MEMM. We see in
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| combination | %P | %R | %F1 |
best=token + cut_prob + previous + next word | 68.75 | 75.54 | 71.98
best - token 50.90 | 36.05 | 42.21
best + POS 56.92 | 79.39 | 66.30
best - cut_prob 599.41 | 75.31 | 66.42
best - previous word 56.53 | 78.48 | 65.72
best - next word 61.53 | 57.87 | 59.64
best + possessive form 70.66 | 73.07 | 71.84
best - hidden word 69.72 | 70.05 | 69.88

Table 9.6: Accuracy of the discriminative MEMM location detector for different
combinations of features. + stands for adding a features, — for removing, POS
for part-of-speech tag and cut_prob for the binned scene cut probability of the
sentence.

|classiﬁer| %P | %R | %F1 |

HMM 68.75 | 75.54 | 71.98
MEMM | 81.31 | 61.92 | 70.30

Table 9.7: Performance of the generative HMM and discriminative MEMM
location detectors in terms of precision (P), recall (R) and F1l-measure.

table 9.7 that the HMM outperforms the MEMM. This again shows that generative
models can outperform discriminative models when trained on small training sets.
The most common error by both classifiers is incorrect segmentation, where only
part of a location is correctly labeled (e.g. labeling “the house” instead of “inside
the house”). This however typically results in labels that are still informative of
the location to the end-user.

9.2.4.3 Location annotation evaluation

We evaluate the correctness of the annotations generated by our system. We could
evaluate the number of scenes that have a correct annotation, but this would
depend on the number of scenes that are automatically detected and would treat
long scenes equal to short scenes. Instead we transfer the annotation of a scene to
every frame in that scene and manually count the number of frames in the video
that have been assigned a correct annotation.

Table 9.8 shows the performance of our system on two episodes (episode 2 and
3 from the 5th season). We see that for episode 2 the LDA topic model reduces
the errors by 9.4%. For this episode the visual reweighting did not help. A
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| episode | only text | text + LDA | text + LDA + vision |

2 54.72% 58.98% 57.39%
3 60.11% 65.87% 68.67%

Table 9.8: Performance of automatically generated annotation as judged by a
human annotator, excluding opening and closing credits.

Transcript Cut back to Anya's. Anya Transcript Various shots of Buffy fighting
looks conflicted. and killing vampires

Text only anya's Text only various

Combined anya's apartment Combined a graveyard

Figure 9.5: Two scenes with a selection of their video frames, description in
the transcript and the automatic annotations based on the text only or on the
combined text and video.

manual inspection revealed that a number of incorrect scene cuts confused the
visual similarity metric by merging a number of scenes in one large segment.

For episode 3 we see that also here the LDA topic model reduces errors with
14.4%. For this episode the visual reweighting improves the automatic annotation,
resulting in a total error reduction of 21.46%. We show some example scenes in
figure 9.5. These scenes illustrate that annotations are successfully transferred
from visually similar scenes when they are lacking in the textual description.

9.2.5 Related Work

Locations are of interest to and well-explored by several branches within the
computer vision and robotics communities. Generic scene type classification, which
seeks to describe the kind of location seen in an image (e.g. beach or street) has
been studied e.g. in (Vogel and Schiele, 2007; Lazebuik et al., 2006; Vailaya et al.,
2001; Blighe and O’Connor, 2008; Ni et al., 2008). Such approaches mostly rely
on supervised techniques and large sets of annotated training data.

Recently, some weakly supervised methods for automatic video annotation have
been proposed. Some of these methods focus on detecting similar locations, such
as Schaffalitzky and Zisserman (2003), who develop a model that retrieves images
of a particular location based on wide baseline matching techniques, Vailaya
et al. (2001) who clusters images in coarse categories such as city/landscape,
forest/mountain, Schroff et al. (2009) represent frames with texton histograms and
cluster these in a number of locations with single-link agglomorative clustering, and
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Héritier et al. (2007) who use latent aspect models to identify discriminative and
often reoccurring parts of locations using SIFT features, which are then labeled
manually. These methods only create clusters of shots in the same location and
do not attempt to assign a label or textual description to these clusters.

Other researchers focus on scene segmentation e.g. Zhai and Shah (2005) use
a purely visual Markov chain Monte Carlo approach and Chen et al. (2008)
use a time-constrained clustering algorithm. These methods do not attempt to
classify the obtained scenes in any way. Zhu and Liu (2009) study the problem of
segmentation into scenes, and classify the obtained scenes into either conversation,
suspense, or action scenes, based on audio and video and using heuristic rules for
the actual classification. Neither of these works explores the use of fan scripts to
obtain location annotations automatically.

Other authors have looked into the use of readily available textual annotation for
TV and movie footage to learn to annotate in a weakly supervised manner as
well. In particular, Cour et al. (2008) propose a unified generative model that
integrates scene segmentation, script alignment, and shot threading. Everingham
et al. (2006) use fan scripts aligned to the video data based on the subtitles to
then identify the cast in a soap series. Laptev et al. exploit scripts for action
recognition in Hollywood movies, using a supervised text classifier (Laptev et al.,
2008) and using a kernel-based discriminative clustering algorithm to overcome
problems with inaccurate alignment between video and text (Duchenne et al.,
2009). Finally Marszalek et al. rank video segments based on actions, using
mining techniques (Marszalek et al., 2009). They also mine location names, but
using scripts that are way more structured than ours and not focusing on specific
locations but rather scene types.

In our work, we use a purely textual topic model (i.e. LDA (Blei et al., 2003)).
Other people have investigated the use of cross-modal topic models, combining
visual and textual information, e.g. (Blei and Jordan, 2003; Monay and Gattica-
Perez, 2003; Li et al., 2009), in the context of automatic image annotation.
However, it turns out it is relatively difficult to balance the contributions of both
modalities. Moreover, in our application, text and visual information are only
weakly linked, with often complementary information present in only one of the
two modalities. Hence, we decided to use the visual information in a postprocessing
step to the textual topic model, updating the textual topic distributions based on
visual similarity. This is, in some sense, similar to the tag propagation proposed
by Guillaumin et al. (2009).
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9.3 Conclusions of this chapter

In this chapter we have developed information extraction methods that analyze
textual descriptions of a video. In the first section we developed a SRL classifier
for visual verbs. We have shown that we can apply the model developed in earlier
chapters to new frame and role definitions and to new datasets. This classifier was
successfully used to learn associations between descriptions and images for persons
and their pose.

In the second section we developed a novel multimodal approach to weakly
supervised automatic annotation of locations from video and text. We have first
described how scene cuts are detected by combining a scene cut detector in the
text with a shot cut detector in the video. The combination took into account
the approximate alignment of the two media. We have then developed a novel
method for the detection of locations in the text and combined this model with
visually reweighted LDA, which allowed the propagation of locations to visually
similar scenes. This system was tested on a challenging action series with many
infrequent locations, where the transcripts often do not describe the locations. The
evaluation showed that in many cases we were able to detect a location present in
the descriptions, and that if the text was lacking a description we could propagate
an annotation from a similar scene, where both LDA and the visual similarity had
a positive contribution, ignoring the case where the visual similarity was confused
by a incorrect scene segmentation.

In the future we would like to exploit a combination of LDA and the latent words
language model. Where LDA is very good at learning global topics for a text,
and learning words that share the same general topics, the latent words language
model is very good in learning synonyms and similar words in a certain specific
context. A combination of these methods could result in even more precise word
similarities, that take into account both local (the context) and global (the entire
document) information. In this respect we mention the work by Griffiths et al.
(2005) who learns simultaneously syntactic classes and semantic LDA-style topics.
However in this work the words belong to either a syntactic class or to a topic,
while we are interested in a method that would combine these in a joint model.
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Chapter 10

Conclusions

Summary and contributions

In this thesis we performed research on a number of topics related to information
extraction from texts. Our main interest was the study of weakly supervised
methods that use knowledge learned from unlabeled data to improve the
performance of supervised models. We first discussed this in a uni-modal
setting, where a set of labeled text is augmented with a large body of unlabeled
texts to improve the accuracy of information extraction methods on texts, and
then discussed this in a multimodal setting, where information extracted from
descriptive texts was used to improve the accuracy of image analysis methods.

Our text started by outlining the context of our research in chapter 1, which
was expanded in chapter 2 with a number of examples of popular information
extraction tasks and with an extensive introduction to directed Bayesian networks.

In part I we applied today’s standard methods for supervised information
extraction to two tasks. Chapter 3 described a supervised method to word sense
disambiguation and chapter 4 described a supervised method to semantic role
labeling. Both methods used well-studied features and models, and achieved state-
of-the-art results. These results where however not fully satisfying, especially
taking into account the large amount of labour needed to create the large manually
annotated datasets used for training. We argued that these supervised models
suffered from ambiguity and underspecification characteristic to natural language.

In part IT we addressed these problems with uni-modal weakly supervised learning,
where a set of annotated texts was augmented with a large body of unlabeled texts.
In chapter 5 we proposed a novel model for semi-supervised learning for semantic
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role labeling. We used hidden variables in the Bayesian models to represent the
labels of the unlabeled examples and estimated the values of these variables with
Gibbs sampling (for the generative model) or Metropolis-Hastings sampling (for
the discriminative model). We observed however how the performance of these
models deteriorated when using more unlabeled examples. We have then proposed
a generative multiple-mixtures model where semantic roles were modeled with
a number of mixture components that gave the model more expressive power
to model natural language. This model was more robust to large numbers of
unlabeled data, but did not outperform the supervised model.

We turned to a different approach in chapters 6 and 7. In chapter 6 we
proposed the latent words language model. This model is a novel model of
natural language that learns word similarities to reduce the sparseness problems
associated with traditional n-gram models. Because of the large number of hidden
variables, traditional methods for training and inference (i.e. the Baum-Welch
algorithm) are not tractable for this model. We have developed a new method
for inference, termed the forward-forward beam search. This method was also
used when training this model and when using it to predict the probability of
unseen texts. Experiments showed that this model outperformed both standard n-
gram smoothing models and class-based language models. The automatic learned
word similarities in this model were used in chapter 7 we improve the models
for word sense disambiguation and semantic role labeling. We discussed various
methods to incorporate this knowledge in the supervised models and found that an
approach where the hidden words were used as probabilistic features resulted in an
improvement over supervised models without these features. These improvements
were largest with small training sets, showing that this method reduces the
dependency of the supervised models on large annotated datasets. This method
had the additional advantage that it can be easily incorporated in other supervised
information extraction and natural language processing methods.

In part IIT we turned to the problem of multimodal weakly supervised learning.
In this part we discussed various methods to analyze text describing the content
of an image or video. We started in chapter 8 by describing the appearance model.
This model combined the salience and the visualness measure to select with high
accuracy the entities from the text that are likely to occur in the image. To
compute the salience (i.e. the importance of an entity in the text) we combined
an analysis of the discourse of the entire text with a syntactic analysis of the
individual sentences. The visualness measure (i.e. the extent to which an the
entity can be perceived visually) was computed with a novel method that uses the
WordNet hierarchy together with a number of visual and non-visual seed synsets.
We used this model in two applications, to align names in the text with faces in
the image and to perform a textual image search. This model was also extended
to include visual attributes, where the visualness of these attributes was learned
from a corpus with image descriptions.
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Chapter 9 discussed the automatic annotation of videos. We considered two types
of annotations, visual semantic roles and scene locations. For the visual semantic
roles we applied our existing semantic role labeling system to a new dataset and a
new set of roles, showing that the system can straightforwardly be applied to these
new settings. To annotate scenes in a video with their locations, we developed a
novel method that combined information in the text with information in the video.
This method consisted of a scene cut detector that combined a text classifier with
a shot cut detector, and of a location detector based on a hidden Markov model.
To propagate the discovered locations to visually and textually similar scenes we
proposed a topic model where the topics where reweighted with visual similarity.

Throughout our work we proposed and evaluated different types of features for
every information extraction task. We also consistently compared generative
and discriminative models. This showed that discriminative models outperform
generative models when large sets of training are available (e.g. word sense
disambiguation, semantic role labeling), but that generative models can have
surprisingly high performance on small training sets, outperforming discriminative
models (e.g. scene cut classification, location detection).

To summarize, we list all novel models and methods that have been developed in
this thesis:
e A semi-supervised model for semantic role labeling.

e A semi-supervised multiple-mixtures model for semantic role labeling.

The relative discounted Kneser-Ney smoothing method.

The latent words language model (LWLM).

A method that uses the LWLM for weakly supervised word sense disambigua-
tion.

A method that uses the LWLM for weakly supervised semantic role labeling.

A method to predict the entities present in an image based on an analysis
of the descriptive text, comprising

— A method to compute the salience of entities in a text.
— A method to compute the visualness of entities from the WordNet
dictionary.

e A method for the detecting and labeling arguments of visual verbs for the
annotation of actions in videos.

A method for the automatic annotation of locations of scenes in a video,
comprising
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— A multimodal scene cut detector for videos.
— A method for the automatic detection of location phrases in the text.
— A multimodal method to propagate location phrases to similar scenes.

These models were all tested on annotated data (models for classification or
annotation) or unseen texts (language models) and compared to state-of-the-art
models where available.

Lessons learned

We started our work with the observation that the limited performance of
supervised models for many information extraction tasks is due to the large
variation and ambiguity of natural language. We then set off with the aim
of finding a method that would leverage the information present in unlabeled
examples. However simple to conceive intuitively, this task was more difficult
than initially anticipated. A method for semi-supervised learning with hidden
variables was found not to be suited for this task. A second method based on an
advanced language model, was more successful. We reported significant gains in
performance when training the models on a limited training set. On larger training
sets however only limited gains were achieved. At this moment it is unclear whether
a further improvement requires improving the language model or the method used
to incorporate results of the language model in an information extraction method.
The outstanding performance of the language model on predicting unseen texts
seem to point to the latter.

We are convinced that our research has pointed to some interesting directions for
future research, although we are probably still only scratching the surface of the full
potential of weakly supervised models. Research on this topic will likely continue
for some years to come, since also after two decades no clear single best method
has been discovered that results in significant gains on a number of information
extraction tasks.

From our research on weakly supervised multimodal methods we learned that a
good method for information extraction is indispensable when trying to combine
the two media, and that it is possible to extract detailed annotations of images and
video from descriptive texts using appropriate information extraction methods.

Future work

Our directions of future work can be divided among a number of topics. First
we would like to investigate two extensions to the latent words language model:
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(1) learn similarities between phrases instead of between words, since the meaning
of multi-word expressions (e.g. “United Nations”, “touch down”) can often not
be determined from the meaning of the individual words. This would involve a
dynamic method to split a sequence of words into individual phrases. This could
be performed with the inside-outside algorithm (Lari and Young, 1990), although
it will also have to be adapted for the large number of hidden variables. This could
be performed with techniques similar to the ones we used to adapt the forward-
backward algorithm for hidden Markov models. (2) We would like to extend the
LWLM to take into account all words in the context, and not only the words in
a window of length n. This would improve the synonyms learned for a word in a
certain context since the general topic or domain of a text influences the relevant
synonyms. In this context we would like to investigate a combination of the LWLM
with latent Dirichlet allocation [Blei et al., 2003], since this model has proven its
adequacy for modeling document level topics.

As described above we do not belief that the full potential of weakly supervised
models has been reached. More specifically we think that more research on
methods to use the latent words language model for supervised information
extraction still has a large potential. Ideally these method would be sufficiently
general to also be applicable to other language models, since intuitively any
knowledge of the structure of language should be useful for an automatic analysis
of this language.

In our second area of research, multimodal image annotation using descriptive
texts, many advances are still possible. We would like to extend the appearance
model with a method that captures cues in the text (e.g. “George Bush (third from
left)”) to further strengthen the prediction of entities likely to be seen in the image.
Ideally these cues would be learned automatically without relying on an annotated
corpus to be independent of a certain corpus or domain. We would also like to
combine the appearance model with the semantic role labeling system used for
visual verbs. For example to identify objects as arguments to these verbs one can
incorporate the visualness measure, since this already gives a strong indication of
objects that are likely to appear in the video. We already outlined one successful
application of the detected actions on news images, but would like to extend this
in the future to a larger number of actions in real life video. Finally we think that
the described method for automatic annotation of locations in scenes describes an
interesting framework that can be adapted to other types of annotations, such as
for example to the annotation of stories in news broadcasts. A different type of
annotation would only require to retrain the location detector on a new annotations
(e.g. to extract headlines of news stories) and would possibly require different types
of features extracted from the video, depending of the entities of interest.
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Appendix A

Distributed computing
architecture

We have developed a distributed computing infrastructure in Java to perform a
task in parallel on many computers. This infrastructure is robust, very easy to set-
up and downloads automatically executable files and datasets and results results
and exceptions to the commanding client. Furthermore it has been implemented
for performance, with data caching, load balancing and automatically selection of
the fastest computing clients. It has also been designed with the explicit goal of
being easy to use in Java programs.

A.1 Usage

We have opted for the following design: a commanding client sends a number
of jobs to the job server. The job server sends these jobs to one or multiple
computing clients that execute every job in parallel. After every job has been
executed, the results are send back to the job server who sends them in turn sends
to the commanding client. We will describe the usage of our framework a bit more
in detail

Remote job

The basic unit of work is the remote job. To create a new type of jobs, the
user creates a subclass of the class RemoteJob and implements the abstract
method void execute(ComputingClient computingClient). In design terms
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this method would be called a hot-spot of our framework. Implementing this
method, and making sure that the job and the data used by the job are serializable
(to be send over the network), is the only work that need to be performed by a
user of this framework. All other aspects are handled automatically.

Commanding client

The class that is used by the user to send and receive jobs, is the class
CommandingClient. First a new object of this class is created using the constructor
with the ip-address, or the dns names of the job server. Then a number of
jobs are sent to the server with the method int sendJobToServer (RemoteJob).
The user then waits for the results of these jobs with the methods JobWrapper
waitForJob(int jobId) or JobWrapper waitForAnyJob(). These methods will
block until either the job with the given id is received, or any job is received. Both
methods return a JobWrapper object that contains the job, any data generated by
the job, and exceptions thrown by the job, if any. The class CommandingClient is
the only class of the framework that is used by an end-user.

A.2 Execution of a job

Once the user has passed a job to the method int sendJobToServer (RemoteJob)
of the class CommandingClient, the job is handled by the framework in a way that
is completely hidden from the end-user. In this section we will see this process
in a bit more detail. First the class int sendJobToServer (RemoteJob) serializes
the job, i.e. it converts the job and any data it references to in a sequence of
bytes. For this is uses the standard ObjectOutputStrean class in the Java APIL
This sequence of bytes is then compressed with the standard ZipOutputStream
class. Once the job (and any data it references) is compressed, it is send to the
job server. The job server will try to find a computing client that is not executing
a job. If multiple computing clients are available, it will send the job to the
client with lowest average execution time per job. Although not exact, since the
time taken by different jobs differs, in reality usually many similar jobs are send
to the server, and this heuristic is usually able to select the fastest computing
client available. If all computing clients are occupied it stores the job until a
computing client becomes available. Once the job arrives at a computing client,
it is unpacked (using ZipInputStream and ObjectInputStream), and its void
execute (ComputingClient computingClient) method is executed. The job will
now perform the tasks implemented by the user, until this method finishes. The
job is then again serialized and compressed, together with data that was generated
during the execution (if any). The computing client then passes the job to the job
server who passes it to the commanding client. The end-user will then receive the
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job through either the JobWrapper waitForJob(int jobId) or the JobWrapper
waitForAnyJob () method.

A.3 Automatic class loading

When a remote job is executed on the computing client, it will be most likely
make use of classes other than the remote job (e.g. datastructures to hold results,
methods designed for complex mathematical operations, ...). If these classes are
not within the standard Java API, the virtual machine on the computing client will
not know them. A possible solution would be to force the end-user to collect all the
necessary class files in a library (e.g. a jar file) that is stored on every computing
client. This solution would require the end-user to make a list of all class-files
employed (which is a non-trivial task for all but the most simple programs), to
collect them and to store them in a library.

We have chosen for a more user-friendly and flexible solution. In Java, when an
object of a certain class is created, the virtual machine loads the class definition
through a class loader. The standard class loader in Java is designed to look for
classes in the class path on the file system. In our architecture we use a new class
loader on the computing client. This loader is implemented as a subclass of the
standard class loader, and it implements an extra method which checks whether
the needed class files are present in the class path. If they are not found, it sends a
message to the job server asking for this class. The job server passes this message
to the correct commanding client, which locates the class definition on its class
path, serializes it, and sends it to the job server who passes it on to the computing
client. The computing client deserializes the class definition and adds it to the
classes know by the virtual machine.

A.4 Robustness

We wanted to make sure that the distributed system is robust against computer
failures. We have implemented a simple scheme that protects the systems agains
failures of computing clients. When the job server sends a job to a computing
client, it remembers the job that was send to this client. If for some reason the
connection with the computing client is lost (e.g. due to a network failure), the job
is passed to a different computing client. Another risk is when a computing client
is overloaded and takes a very long time to finish a job, although otherwise reacting
normally. As a precaution to this case we send a job to different computing clients
(max 3), if other computing clients are idle and no other jobs need to be executed.
From the moment one of the computing clients returns the executed job, the jobs
on the other clients are terminated.
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A.5 Security

Because the described architecture allows for the executing of arbitrary Java code
on the computing clients, security is a serious concern. We have implemented a
simple but effective security protocol based on a SSL connection with a private
and public key pair. The job server holds the private part of the key. Both the
computing and commanding clients have a copy of public part of the key. When a
client connects to the server the public key is checked against the private part and
if matched, the connection is established. If the public key does not match, or no
public key is offered, the connection is immediately terminated. Once a connection
is made, all data send on this connection is SSL-encrypted, thus offering a reliable
protection against sniffing or a man-in-the-middle attack. As a further security
measure the IP addresses of the commanding clients are logged, together with
the number of executed jobs and the computing clients on which these jobs were
executed.

An important weakness in this design is the distribution of the public key: every
computer executing a computing or commanding client needs a copy of this key. If
one of this clients however is compromised, and a malicious party obtains a copy
of the public key, he gains full access to the system and thus to all computing
clients.

A.6 Future work

We have build this distributed system mainly with the goal of being able to run the
latent words language model in parallel on a large number of computers. Although
we have also used the framework for several other distributed tasks, it has never
been tested by users outside our research group. Questions that are not fully
answered at this moment are: how many commanding clients can be the job server
handle before becoming a bottleneck? How well can it cope with jobs that need
large amounts of data? How secure is it against a targeted attack? How well does
the system perform on different computer architectures (e.g. cluster computers,
multiple processors, shared memory architectures, ...)7. We think that the most
important weakness in the design at this moment is the hanlding of jobs of different
commanding clients. If different commanding clients execute large amounts of jobs,
the jobs are send to the computing clients on a first-come, first-serve basis. This
however does not take into account the expected execution time of a job, or the
amount of jobs that are already being executed for a particular commanding client.
We plan to address this problem in future work.



Appendix B

Iterative line search

For the latent words language model we have a collection of v smoothing
parameters v = [y1,...,7] with lower bounds I = [l1,...,{,] and upper bounds
u = [ug,...,uy]. We would like to select values for these parameters such that
the model assigns maximal probability to a collection of unseen texts. In this
section we develop a simple algorithm that finds the values for some parameters
v = [7,--, 7] so that they represent a (possibly local) maximum for some
objective function f(.). Note that this algorithm is general in the sence that
it can be used to optimize any objective function f(.) and not only the probability
of unseen text according to a language model.

The algorithm is shown in listing 4. This algorithm iterates over all the parameters
as long as an improvement was made in the previous iteration (stored in variable
G). In every iteration we test for every parameter 7; whether an improvement can
be made by increasing or decreasing this parameter with e, taking into account the
lower and upper bounds. If an improvement can be made, the parameter is set to
this new value. We then try the next parameter and so on. Since we improve the
objective function f(.) in every step we are guaranteed to find a (local) maximum.

Although this algorithm is very simple, we found that the number of steps needed
to find the optimal smoothing parameters for the latent words language model
was sufficiently low (usually around 5 iterations over all the variables), given a
proper value for € was chosen. Of course more complex optimization methods (e.g.
quasi-Newton methods), would most likely converge even faster.
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Algorithm 4

Require: v = [y1,...,%], L = [l1, ..., ], w = [u1, ..., u,] and f(.)
1: G < true
2: maz < f(v)
3: while G do

S I A

G < false
for i =1 tov do

Vi =i €
if v; > [; then
val; = f(7)
else
val; = —oo
end if
Yi <= Vi + 2¢
if v; < u; then
val, = f(’7)
else
val, = —oc0
end if
if val; > val, AND wval; > max then
Vi = Vi — 2€
mazx < val;
G < true
else if val, > val; AND val, > max then
mazxr < val,
G < true
else
Vi =Y —€
end if

end for

29: end while




Appendix C

Computation of expected
value of sequences of hidden
words

In section 6.2.2 we have explained how we compute the expected value of a hidden
word at a particular position as

j+0

P(hy| ) 2wt Y B na )
i |Wtrain, =~

! ! P(Wtrain|OT)

where the valpes ~' (hgigin 42 h7) were defined as the joint probability of observing
the words wi, the sequence h; , 5, and the hidden variable i;. This value was
computed by first passing the forward messages a(hj_, ,,) up to position j, and
then passing the message 7’(h;.1‘§7n+27 h;) for § more positions. In this section we
will show how we compute P(h;_n 42| Wtrain, CT,77), the probability of observing

sequence h‘gfn 12 given observed words wies;. We again define a new forward
probability y(h}_,,, ,, hJ
wi, the sequence h!_, ., and the sequence h§7n+2. This value is defined for i > j

and is given by

_n+42) Which is the joint probability of observing the words

7(h27n+2, hjifn+2) = Pluwilhi) Z’”*"“ a(hé:llﬁl)P-(hi'héjﬁl) i—1 Zfl :j:
! P(w2|h2) Zhi,nJrl V(h;:n-l-l? h?—n+2)P(h’Z|hz:n+l) ifi> J
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. ; j .
We can interpret y(h;_, o,h7 ) as a series of messages, where for every

different value of h§7n+2= a series of messages v(h!_, ,, h§7n+2) is passed from

position j to the end of the sequence. A trimmed version of this variable is defined

as

Timnt1P(wilhi) 3, trim(a/ (hiZ,, 1)) P(hi[hiZ, 1) if

v’(hﬁ_mm hﬁ_n+2) = . Ji—1 j i—1 .
Oi—n+1P(wilhy) Zhi,nﬂ trim(y (hi7n+17 hj7n+2))P(hi|hifn+1) if

The sum in this equation has time complexity O(b|V'|) and sorting the values has
complexity O(b|V|log(b|V'|)). Doing so for every position in the sequence results
in a time complexity of O(N, x [b|V|log(b|V|)]). The final probability is then
computed as

N )
Zh%ﬁfnw ’Y/(hNZ—n+2v h;7n+2)

P(Wtrain | CT)

P(h§7n+2 |Wt7‘ainu CT)

This value can again be limited to the § positions after j to reduce the time
complexity

P(h§7n+2|WinaCT) = P(h§7n+2|wi+5707)

which then results in
s )
Zhj+5 ryl(h;’+5—n+2’ h;’—n+2)

P(h! iy OT) o —Itoont?
( jin+2|Wt7‘azna ) P(thm|C"')

Since we need to compute this probability for every position in the sequence, the
total time complexity is O(N,, x (1+46) x (b|V|+b|V|log(b|V])). We see how this
time complexity is equivalent with the time complexity to compute the expected
value for the individual hidden words. In fact, the entire algorithm is almost
equivalent.



