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iAbstra
tInformation extra
tion (IE) methods dete
t and 
lassify stru
tured information inunstru
tured data sour
es, su
h as texts and images. Currently, most automati
IE methods are developed with supervised ma
hine learning algorithms that aretrained on large, manually annotated datasets. The ability of ma
hine learningalgorithms to 
ombine 
omplimentary and 
ontradi
ting eviden
e has provedsu

essfully in a wide range of IE tasks. This approa
h however also su�ers fromtwo important disadvantages. The �rst and most important disadvantage is thatfor every new task, or for every new domain, a new training 
orpus needs to bemanually annotated. This manual annotation 
an require the annotation of severalthousands of senten
es or images, whi
h seriously in
reases the 
ost of developingnovel IE methods. A se
ond disadvantage is that for 
omplex IE tasks, even alarge training set will 
ontain only a fra
tion of all the relevant stru
tures in thedata, whi
h 
an seriously limit the a

ura
y of these methods.In this thesis we study weakly supervised learning, where we develop IE methodsthat use only a small set of annotated examples, together with a large set ofunannotated examples to a
hieve a high a

ura
y. We study two settings: (1)unimodal weakly supervised learning, where annotated texts are augmented witha large 
orpus of unlabeled texts and (2) multimodal weakly supervised learning,where images or videos are augmented with texts that des
ribe the 
ontent of theseimages or videos.In the unimodal setting we study two IE tasks that extra
t information from texts.The �rst task, word sense disambiguation (WSD) determines for every word inthe text the meaning of that word, depending on the 
ontext. The se
ond task,semanti
 role labeling (SRL), determines for every verb in the text the semanti
frame expressed by that verb and the words in the senten
e that are prominentarguments of this verb. The most important 
ore of our models is a dire
tedBayesian network.We 
onsider two families of weakly supervised methods to extend the supervisedmodels. The �rst family of methods are semi-supervised methods, where we learnthe parameters of Bayesian network by employing both labeled and unlabeleddata. For this we use dire
ted Bayesian networks, where the stru
tures of theunlabeled examples are represented with hidden variables. The values of thesehidden variables are then iteratively estimated by optimizing the predi
tive qualityof the Bayesian network on the unlabeled examples. We show that this method isnot suitable for IE on texts be
ause of the violation of the assumptions madeby this approa
h. We then turn to a di�erent family of weakly supervisedmethods, where we �rst learn an unsupervised model on the unlabeled examples,and use the statisti
s learned by this model in a supervised ma
hine learningalgorithm. We develop an unsupervised model, the latent words language model



ii(LWLM), that learns a

urate word similarities from a large 
orpus of unlabeledtexts. We show that this model is a good model of natural language, o�eringbetter predi
tive quality of unseen texts than previously proposed state-of-the-artlanguage models. In addition, the learned word similarities 
an be used su

essfullyto automati
ally expand words in the annotated training with synonyms, wherethe 
orre
t synonyms are 
hosen depending on the 
ontext. We show that thisapproa
h improves both the WSD and SRL 
lassi�er. Furthermore the LWLM
an be used in a wide range of IE and natural language pro
essing appli
ations.The se
ond part of this thesis dis
usses weakly supervised learning in a multimodalsetting. We develop IE methods to extra
t 
ertain types of information from textsthat des
ribe an image or video, and use this extra
ted information as a weakannotation of the image or video. We start by developing a method to predi
twhi
h entities are present in an image. For this we develop two novel measures.The salien
e measure 
aptures the importan
e of an entity, depending on theposition of that entity in the dis
ourse and in the senten
e. The visualness measure
aptures the probability that an entity 
an be per
eived visually. This informationis extra
ted in a novel way from the existing WordNet database. We show that
ombining these measures results in an a

urate predi
tion of the entities presentin the image. We then dis
uss how this model 
an be used to learn a mappingfrom names in the text to fa
es in the image, and to retrieve images of a 
ertainentity.We then turn to the automati
 annotation of video. We develop an SRL systemthat annotates a video with the visual verbs and their visual arguments, i.e. a
tionsand arguments that 
an be observed in the video. The annotations of this systemare su

essfully used to train a 
lassi�er that dete
ts and 
lassi�es a
tions in thevideo. A se
ond system annotates every s
ene in the video with the lo
ation ofthat s
ene. This system 
omprises a multimodal s
ene 
ut 
lassi�er that 
ombinesinformation from the text and the video, an IE algorithm that extra
ts possiblelo
ations from the text and a novel way to propagate lo
ation labels from one s
eneto another, depending the similarity of the s
enes in the textual and visual domain.All the work performed in this thesis is formally evaluated, by 
omparing theautomati
 outputs to the ground truth outputs (in the 
ase of IE 
lassi�ers), or,by measuring the perplexity of the model on an unseen test text (in the 
ase ofthe language models). For several tasks we outperform (e.g. WSD and LWLM) ormat
h (e.g. SRL) the best state-of-the-art models. For other tasks we are the �rstto formally evaluate our system on these tasks (e.g. annotation of visual entitiesand annotation of lo
ations), setting a 
ompetitive baseline for further resear
h.



iiiKort overzi
htInformatie extra
tie (IE) methoden dete
teren en 
lassi�
eren gestru
tureerdeinformatie in ongestru
tureerde bronnen, zoals teksten of afbeeldingen. Momenteelmaken de meeste automatis
he IE methoden gebruik van ma
hine leer algoritmesdie worden getraind op grote, manueel geannoteerde datasets. De bekwaamheidvan ma
hine leer algoritmes om aanvullende of tegengestelde informatie te
ombineren is su

esvol gebleken voor een grote verzameling van IE taken. Dezeaanpak heeft e
hter ook twee grote nadelen. Het eerste en meest belangrijke nadeelis dat voor elke nieuwe taak een nieuw training
orpus moet worden geannoteerd.Deze manuele annotatie omvat mogelijk duizenden zinnen of afbeeldingen, wat dekost van de ontwikkeling van IE methodes sterk doet rijzen. Een tweede nadeelis dat voor 
omplexe IE taken, zelfs een grote dataset maar een fra
tie van allestru
turen zal bevatten die herkend moeten worden. Dit kan de nauwkeurigheidvan de IE methodes negatief beïnvloeden.In deze verhandeling bestuderen we zwak gesuperviseerd leren, waarbij a

urateIE methodes getraind worden op een kleine verzameling geannoteerde voorbeeldenen een grote verzameling niet geannoteerde voorbeelden. We bestuderen tweegevallen: (1) unimodaal zwak gesuperviseerd leren, waar geannoteerde tekstenworden aangevuld met een grote verzameling niet geannoteerde teksten (2)multimodaal zwak gesuperviseerd leren, waar afbeeldingen of video's wordenaangevuld met teksten die hun inhoud bes
hrijven.Voor het unimodale geval bestuderen we twee IE taken die informatie uitteksten extraheren. De eerste taak is de disambiguatie van ambigue woordenafhankelijk van de 
ontext waarin die woorden voorkomen. De tweede taakis het bepalen van het semantis
he frame voor elk werkwoord, samen metde belangrijkste semantis
he rollen voor dat werkwoord. De IE algoritmenvoor deze twee taken worden ontwikkeld met behulp van geri
hte Bayesiaansenetwerken. We bes
houwen twee 
ategorieën van zwak gesuperviseerde methoden.De eerste 
ategorie zijn semi-gesuperviseerde methoden die de parameters van deBayesiaanse netwerken leren aan de hand van geannoteerde en niet geannoteerdevoorbeelden. In deze netwerken worden de labels van niet geannoteerdevoorbeelden voorgesteld met verborgen variabelen. De waardes van deze variabelenworden iteratief ges
hat door de voorspellende kwaliteit van het netwerk op de nietgeannoteerde voorbeelden te optimaliseren. We tonen aan dat deze 
ategorie vanmethodes niet ges
hikt is voor IE uit tekst, omdat de veronderstellingen die dezemethoden maken niet gelden. Hierna ri
hten we ons op een tweede 
ategorie vanzwak gesuperviseerde methoden, waar eerst een ongesuperviseerd model geleerdwordt met niet geannoteerde voorbeelden, en waar dan de statistieken geleerddoor dit model gebruikt worden in een gesuperviseerd ma
hine leer algoritme. Weontwikkelen een nieuw ongesuperviseerd taalmodel, het latente woord taalmodel(LWTM), dat de gelijkenis tussen woorden leert aan de hand van een verzameling



ivniet geannoteerde teksten. We tonen aan dat dit model met een hoge a

uraatheidniet eerder geziene teksten kan voorspellen. De geleerde gelijkenissen kunnengebruikt worden om woorden te expanderen met hun synoniemen, welk zowel hetsysteem voor disambiguatie als het systeem voor het ontdekken van semantis
herollen verbetert. Bovendien is de gebruikte methode algemeen en kan ze gebruiktworden in een grote verzameling andere IE methoden.Het tweede deel van deze thesis behandelt zwak gesuperviseerd leren voormultimodale datasets. We ontwikkelen IE methoden om bepaalde types vaninformatie te extraheren uit teksten die de inhoud van afbeeldingen of video'sbes
hrijven. De geëxtraheerde informatie wordt dan gebruikt als een zwakkeannotatie van de afbeelding of video. We beginnen met het ontwikkelen vaneen methode die voorspelt welke entiteiten in een afbeelding aanwezig zijn aande hand van de tekst die de afbeelding bes
hrijft. We ontwikkelen hiervoor tweenieuwe heuristieken. De salien
e heuristiek modelleert de belangrijkheid van eenentiteit in de tekst, aan de hand van de positie van die entiteit in de gehele teksten in de zin. De visualness heuristiek modelleert de kans dat een entiteit visueelkan worden waargenomen, welke op een nieuwe manier wordt bekomen uit deWordNet database. Deze heuristieken resulteren ge
ombineerd in een nauwkeurigevoorspelling van de aanwezige entiteiten in de afbeelding. We tonen ook hoe ditmodel gebruikt kan worden om de 
orrespondentie te leren tussen namen in detekst en gezi
hten in de afbeelding, en om te zoeken naar afbeeldingen met eenbepaalde entiteit.We breiden deze aanpak uit naar de annotatie van video's. We ontwikkeleneen systeem voor het dete
teren van visuele semantis
he rollen van visuelewerkwoorden, i.e. a
ties en argument die geobserveerd kunnen worden in de video.De automatis
h ontdekte a
ties en argumenten worden hierna gebruikt om eensysteem te trainen dat deze a
tie en argument automatis
h ontdekt in een video.Een tweede uitbreiding is de automatis
he annotatie van lo
aties van s
enes inde video. Dit systeem 
ombineert informatie uit de tekst en de video om devideo onder te verdelen in s
enes, en een IE algoritme om lo
aties uit de tekst teextraheren. We ontwikkelen ook een nieuwe manier om lo
atie labels te propagerenvan één s
ene naar een andere, afhankelijk van de similariteit van de s
enes in hettekstuele en visuele domein.Al de ontwikkelde systemen in deze verhandeling werden formeel geëvalueerd, doorofwel de automatis
he uitvoer te vergelijken met de manuele annotatie (voor IEmethodes), of door de waars
hijnlijkheid van een nieuwe tekst volgens het modelte meten (voor de taalmodellen). Voor vers
hillende taken behalen we betere(e.g. woord disambiguatie en latent woord taalmodel) of gelijklopende resultaten(e.g. semantis
he rol labelen) dan de beste state-of-the-art systemen. Voor anderetaken zijn we de eersten die deze resultaten voor deze taken formeel evalueren (e.g.annotatie van visuele entiteiten en annotatie van lo
aties) en zetten we hiermeeeen 
ompetitieve standaard voor toekomstig onderzoek.
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viiFormal notationRe
urring mathemati
al symbols used throughout the text:
BN = (Nodes,Arcs) Bayesian network 
onsisting of 
olle
tion of nodes Nodesand a 
olle
tion of ar
s Arcs

Nodes nodes in a Bayesian network
Arcs ar
s in a Bayesian network
Nodei node i

Domi domain of node i

Funci probability mass fun
tion of node i

V ali value of node i

wtrain training text
Nt length training text
wtest test text
Nu length test text
wheldout heldout text
Nh length heldout text
DA annotated text
DU text that has not been annotated
K number of features
wi word at position i

Ftri all features of word at position i

Ftrji features for word i given verb at position j

F trk
i k-th feature of word at position i

F trk
ji k-th feature for word i given verb at position j

Li label of word at position i

θ generi
 symbol for parameters of a model



viii
θsemi parameters of a model learned with semi-supervised learning
θA parameters of a model learned with supervised learning
L(DA; θ) likelihood of annotated data given parameters
Synseti synset for word on position i.
Predj predi
ate of word at position j

rji role for word i relative to the verb at position j

rj all roles for the verb at position j

Lj = (Predj , rj) labeling for predi
ate j , i.e. the label Predj of the predi
ateand the labels rj of all roles
w

i
i−n+1 n-gram [wi−n+1, ..., wi]

hi hidden word at position i

c(wi
i−n+1) 
ounts of the n-gram w

i
i−n+1 in the training 
orpus

d(c(wi
i−n+1))dis
ount fa
tor for 
ounts c(wi

i−n+1)

δ(wi−1
i−n) dynami
 interpolation fa
tor

π(wi−1wi) the number of 
ontext the bigram wi−1wi o

urs in
C 
olle
tion of all 
ounts from all n-gram in the training 
orpus
γ 
olle
tion of all smoothing parameters
α(hi

i−n+1) forward values for n-gram h
i
i−n+1

β(hi
i−n+1) ba
kward values for n-gram h

i
i−n+1

γ(hi
i−n+1, hj) forward values for n-gram h

i
i−n+1 and hidden value hj

V vo
abulary



ixAbbreviationsRe
urring abbreviations used throughout the text, in alphabeti
al order:ADKN absolute dis
ounted Kneser-Ney smoothingBN Bayesian networkHMM hidden Markov modelIP interpolated smoothingLDA latent Diri
hlet allo
ationLWLM latent words language modelME maximum entropyMEMM maximum entropy Markov modelNB naive Bayespmf probability mass fun
tionPOS part-of-spee
h tagRDKN relative dis
ounted Kneser-Ney smoothingSRL semanti
 role labelingWSD word sense disambiguation
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Chapter 1Outline�Nothing 
lears up a 
ase so mu
h as stating it to another person.�The Memoirs of Sherlo
k Holmes (1893)In this 
hapter we introdu
e the main topi
s of this thesis. We �rst dis
uss the �eldof natural language pro
essing (se
tion 1.1) and the �eld of information extra
tion(se
tion 1.2). In se
tion 1.3 we will see how information extra
tion algorithmstoday are mostly developed with ma
hine learning methods. This approa
h hashowever some disadvantages that 
an be solved with weakly supervised learning.Finally we outline the stru
ture of this thesis in se
tion 1.4.1.1 Natural language pro
essingThis thesis is situated in the �eld of natural language pro
essing (NLP), whi
h wede�ne asDe�nition 1.1 Natural language pro
essingThe automati
 analysis, transformation and generation of natural language textsusing 
omputer algorithms.As we will see in the following 
hapters we will mainly be interested in the analysisof natural language. To put this in a larger 
ontext, we are a
tually interestedin using an automati
 analysis of natural language to solve a spe
i�
 information3



4 OUTLINEneed of a spe
i�
 end-user. Natural language pro
essing is only a small part ofthe full pro
ess of solving an information need. An idealized des
ription of su
h apro
ess is:1. An end-user has a spe
i�
 information need that 
an possibly be satis�edby the use of automated natural language pro
essing from natural languagetexts.2. A person familiar with NLP analyzes this information need and spe
i�es aformal task de�nition and a des
ription of the task 
orpus.3. A NLP expert designs and implements a 
omputer algorithm to 
arry out,up to a 
ertain a

ura
y, the de�ned task on the given 
orpus.4. The 
omputer algorithm is run on the entire task 
orpus, produ
ingautomati
 outputs for all texts.Although this des
ription is very general, it helps to outline the topi
 of this thesis.We perform a study of step 3: the design of 
omputer algorithms for the automati
analysis of natural language text. We thus generally assume that the task de�nitionand 
orpus are known beforehand. Only on a small number of o

asions we willaddress the other steps involved in this pro
ess.1.2 Information extra
tionNatural language pro
essing is a broad dis
ipline that 
omprises many di�erenttasks. We will only be interested in one of these sub-tasks, information extra
tion(IE). Although this term is 
ommonly used to refer to a number of related tasks,it does not have a 
ommonly agreed de�nition. In this thesis we use the followingde�nition:De�nition 1.2 Information extra
tionThe extra
tion of a prede�ned stru
ture in natural language using 
omputeralgorithms, where elements in the stru
ture have a mapping to individual words orphrases in the text.The elements that distinguish information extra
tion from the more generalnatural language pro
essing are prede�ned stru
ture and mapping to individualwords or phrases. A di�erent view on information extra
tion states that aprede�ned stru
ture with a number of slots is given, and that the goal of anIE method is to �nd the positions where this stru
ture is present in the text and



AUTOMATIC INFORMATION EXTRACTION METHODS 5to �nd the elements, su
h as words, phrases or senten
es that �ll one or more ofthe slots.In this thesis we perform experiments with a number of di�erent informationextra
tion tasks. Two methods, word sense disambiguation (
hapter 3) andsemanti
 role labeling (
hapter 4), are used frequently throughout this thesis andallow us to 
ompare the di�erent methods that are developed on a �xed task and
orpus.1.3 Automati
 information extra
tion methodsOur de�nition of information extra
tion states that a 
omputer algorithm is usedto perform an automati
 analysis of texts. It does not state however how thisalgorithm is designed. In this se
tion we outline some of the methods that havehistori
ally been used in IE algorithms.1.3.1 Histori
al overviewPerforming an automati
 analysis of text has been a goal of arti�
ial intelligen
eresear
hers from the very beginning of 
omputer s
ien
e (Jurafsky and Martin,2008). The �rst extensively studied information extra
tion task is without doubtsynta
ti
 senten
e parsing, that tries to dis
over the stru
ture of a senten
ea

ording to a prede�ned grammar. Resear
h on this topi
 started blossomingat the end of the 1950's and beginning of the 1960's with the study of formallanguage theory, generative syntax and automati
 parsing algorithms. Theseearly parsing algorithms (e.g Harris (1962)) used pattern mat
hing and keywordsear
h 
ombined with simple heuristi
s for reasoning. By the end of the 1960'smore formal logi
al systems were developed: Colmerauer (1970) de�ned a totalpre
eden
e 
ontext free grammar and used the logi
 programming language Prologto implement a deterministi
 senten
e parser. Kay (1980) and Pereira andWarren (1983), used an improved parsing algorithm (
hart parsing, a dynami
programming algorithm) but were still limited to deterministi
 algorithms. Animportant disadvantage of these methods is that for an ambiguous senten
e,multiple parses are found without any indi
ation of whi
h parse is more likely.Another su

essful example at the time is the SHRDLU program developed byWinograd (1972). The program showed the possibilities of natural languagepro
essing for human-
omputer intera
tion, allowing the user to give 
ommandsto a 
omputer program using 
omplex senten
es. It 
ombined a senten
e parser, amemory of the previous intera
tions, and a method for disambiguating ambiguousterms depending on the 
ontext. It however relied on a simple deterministi
 (Lisp)



6 OUTLINEimplementation and it was not 
lear how this method 
ould be extended for usagein a broader, more realisti
 domain.A small number of information extra
tion tasks other than synta
ti
 parsing werestudied during this time, su
h automati
 pronoun resolution (Hobbs, 1977) anddis
ourse modeling (Grosz et al., 1977). Also here deterministi
 programs withsome simple heuristi
s were used.An important shift in methods used for information extra
tion o

urred with theintrodu
tion of large annotated 
orpora, su
h as the Penn Treebank (Mar
uset al., 1994), the Penn Dis
ourse Treebank (Miltsakaki et al., 2004) and theTimeBank (Pustejovsky et al., 2003). These 
orpora made it possible to usesto
hasti
 methods, whi
h had already been su

essfully applied to other problems,su
h as opti
al 
hara
ter re
ognition (Bledsoe and Browning, 1959) and spee
hanalysis (Jelinek et al., 1975; Baker, 1975). The beginning of the 20th 
enturysaw a wide appli
ation of ma
hine learning methods, su
h as support ve
torma
hines (Boser et al., 1992; Vapnik, 1995), maximum entropy ma
hines (Bergeret al., 1996) and graphi
al Bayesian models (Pearl and Shafer, 1988). The new
orpora also allowed a 
omparison of di�erent information extra
tion algorithms onidenti
al test-
orpora, a trend that further intensi�ed with the advent of workshopsthat perform a double-blind 
omparison of di�erent systems on an identi
al test
orpus. Examples of these workshops are the Message Understanding Conferen
es1(Grishman and Sundheim, 1996) on the dete
tion of various types of events,the Automati
 Context Extra
tion2 (Doddington et al., 2004) workshops on thedete
tion of entities, relations and events, the Senseval3 (Kilgarri�, 1998) andrelated SemEval workshops on word sense disambiguation, semanti
 role labeling,identi�
ation of logi
 forms, metonymy resolution and other information extra
tiontasks, and the shared tasks of the Conferen
e on Computational Natural LanguageLearning4 (Stevenson and Carreras, 2009), on 
lause identi�
ation, named entityre
ognition, semanti
 role labeling and dependen
y parsing.1.3.2 Ma
hine learning methodsToday ma
hine learning algorithms are the dominant method to develop informa-tion extra
tion algorithms. A ma
hine learning algorithm is a 
omputer programthat automati
ally 
onstru
ts (parts of) the information extra
tion algorithm onthe basis of an annotated training set. The training set is a 
olle
tion of naturallanguage texts that are annotated with the target output stru
tures. Usually ama
hine learning method aims to minimize a given error measure that quanti�esthe di�eren
e between the automati
 
onstru
ted outputs and the manual outputs.1http://www.
s.nyu.edu/
s/fa
ulty/grishman/mu
6.html2http://www.itl.nist.gov/iad/mig/tests/a
e/3http://www.senseval.org/4http://www.
nts.ua.a
.be/
onll2010/



AUTOMATIC INFORMATION EXTRACTION METHODS 7Many di�erent ma
hine learning methods have been developed and applied oninformation extra
tion methods, we refer to (Manning and S
hütze, 2002; Jurafskyand Martin, 2008) for extensive overviews. In this thesis we fo
us on ma
hinelearning methods that are based on graphi
al Bayesian models. These models usea graphi
al representation to represent dependen
ies between di�erent variables,allowing for the 
onstru
tion of 
omplex models whi
h 
an easily be used for weaklysupervised and unsupervised learning. We will dis
uss graphi
al Bayesian modelsat length in 
hapter 2.1.3.3 Weakly supervised learningA major disadvantage of ma
hine learning methods is the large training set thatis ne
essary to learn a

urate automati
 information extra
tion algorithms. ThePropBank training 
orpus for semanti
 role labeling for example, 
ontains 113.000verbs for whi
h all semanti
 roles have been manually annotated. A 
orpus of thissize is ne
essary for most information extra
tion methods sin
e natural language isvery varied and ma
hine learning methods thus need to learn a mapping for a largenumber of di�erent inputs. Furthermore, the labour intensive task of 
reating anannotated training 
orpus needs to be repeated for every information extra
tiontask, or when a spe
i�
 information extra
tion method needs to be applied on a
orpus in a di�erent language or domain. This requirement greatly in
reases the
osts for the development of IE algorithms, both in terms of time and money.A solution to this problem is the use of weakly supervised ma
hine learningmethods. We de�ne these methods asDe�nition 1.3 Weakly supervised ma
hine learning methodsWeakly supervised ma
hine learning methods are ma
hine learning methods thatuse a labeled together with an unlabeled 
orpus to train information extra
tionmethods.Today, large ele
troni
 
olle
tions of texts in various languages and domains existand 
an typi
ally be obtained at a relative small 
ost. The most important goal ofthis thesis is the development of weakly supervised algorithms that allow to 
reateinformation extra
tion algorithms with a small annotated training 
orpus. Ideally,one would need to spe
ify only a handful of examples for a given informationextra
tion task to 
reate an automati
 
omputer algorithm that 
an solve the taskup to a high level of a

ura
y.In this thesis we 
onsider two types of weakly supervised learning. The �rst type isuni-modal weakly supervised learning, where we augment a small set of annotatedtexts with a large 
orpus of unlabeled texts, and use these to improve a

ura
yof information extra
tion methods and redu
e the dependen
y of these methods



8 OUTLINEon large annotated 
orpora. The se
ond type is multimodal weakly supervisedlearning, where we use supervised information extra
tion methods to automati
generate des
riptions of the 
ontent of images and video. These des
riptions arethen used to train methods that perform an automati
 analysis of these images orvideo. This resear
h is motivated by the observation that frequently, the di�
ultiesfa
ed by automati
 methods for image analysis are even greater then these fa
edby natural language pro
essing methods, be
ause of the large variations in s
ale,lighting 
onditions and relative orientation of entities in images.1.4 Outline thesisWe have introdu
ed the major topi
s of our resear
h and now des
ribe the stru
tureof this text. This thesis is divided in three main parts that dis
uss respe
tivelysupervised information extra
tion, uni-modal weakly supervised informationextra
tion and multimodal weakly supervised image annotation.Before diving in the �rst part of this text we start in 
hapter 2 by des
ribingbasi
 
on
epts and te
hniques used throughout this work. We give an extensiveintrodu
tion to dire
ted Bayesian networks, whi
h will be used to develop allour supervised, weakly supervised and unsupervised models. This 
hapter willalso des
ribe in more detail how information extra
tion methods are typi
allydeveloped, and give a number of examples of popular information extra
tionmethods that will help to situate the information extra
tion tasks ta
kled in thisthesis.In part I we dis
uss supervised information extra
tion methods. This partexplains in detail how the texts that need to be labeled are 
onverted to a featurerepresentation, how this representation is in
luded in a dire
ted Bayesian networkand how this network is used to generate an automati
 labeling. We will apply thisapproa
h to two spe
i�
 information extra
tion tasks. Chapter 3 dis
usses wordsense disambiguation, where we develop a supervised method to determine themeaning of a word depending of the 
ontext of that word and 
hapter 4 dis
ussessemanti
 role labeling where we develop a supervised method for the automati
dete
tion and 
lassi�
ation of the prominent arguments of a verb.In part II we dis
uss uni-modal weakly supervised learning, where we investigatetraining methods that 
ombine a labeled training set with an unlabeled set totrain a

urate information extra
tion methods without relying on large hand-tagged 
orpora. In 
hapter 5 we dis
uss a traditional approa
h to this problem:semi-supervised learning. This approa
h uses a single Bayesian network thatto represent both labeled and unlabeled examples. The missing labels of theunlabeled examples are iteratively estimated using Markov 
hain Monte Carlosampling te
hniques. We will see that this approa
h relies on a spe
i�
 set of



OUTLINE THESIS 9assumptions, and how a violation of these assumptions redu
es the performan
eof the �nal model.We then turn to a di�erent approa
h to weakly supervised learning: use a fullyunsupervised model to learn statisti
s or stru
tures from a large unlabeled 
orpusand use these statisti
s or stru
tures in a supervised 
lassi�er. We develop thelatent words language model in 
hapter 6, whi
h is a novel unsupervised modelthat learns word similarities from a large set of unlabeled examples. Thesesimilarities are learned to optimize the predi
tive a

ura
y of this model of unseentexts, and 
an be su

essfully used in supervised information extra
tion methods.We demonstrate this in 
hapter 7 by expanding the supervised models used forword sense disambiguation and semanti
 role labeling with the learned similarities.We also see in this 
hapter that this method 
ompares favorably to other weaklysupervised methods proposed for semanti
 role labeling.In part III we turn to the 
ase of multimodal weakly supervised learning. In thispart we dis
uss methods that employ information extra
tion methods to aid theautomati
 analysis of images and video. In 
hapter 8 we develop the appearan
emodel whi
h �nds the entities present in an image by analyzing a text des
ribingthis image. This model is subsequently used in two appli
ations, to align namesin the text with fa
es in the image, and to perform textual image retrieval.Chapter 9 deals with the automati
 annotation of video. We �rst fo
us on theautomati
 annotation of a
tions of a
tors in the video, and apply the previouslydeveloped semanti
 role labeling system to the trans
ripts of an video series. Ina se
ond task we 
ombine information extra
ted from the trans
ript with anautomati
 analysis of the video to dis
over the di�erent s
enes in a video, andto derive the lo
ation for every s
ene.We 
on
lude this thesis in 
hapter 10, where we summarize the work that wasperformed, the lessons that were learned in the pro
ess, and promising dire
tionsfor future resear
h.





Chapter 2Foundations�Arti�
ial intelligen
e has done well in tightly 
onstrained domains. Winograd[...℄ astonished everyone with the expertise of his blo
ks-world natural language.Extending this kind of ability to larger worlds has not proved straight- forward,however... The time has 
ome to treat the problems involved as 
entral issues�Patri
k H. Winston (1976)In this 
hapter we introdu
e the basi
 
on
epts and te
hniques used throughoutthis thesis. We start by des
ribing a number of important information extra
tiontasks in se
tion 2.1. These examples will help to situate the information extra
tiontasks ta
kled later in this thesis. We then pro
eed by giving an extensiveintrodu
tion to dire
ted Bayesian networks in se
tion 2.2. This framework wasused in all our models and we will des
ribe how it des
ribes a probabilitydistribution over a 
olle
tion of variables and how it 
an be used for ma
hinelearning.2.1 Information extra
tion tasksIn the previous 
hapter we have des
ribed information extra
tion (IE) as the taskof extra
ting a prede�ned stru
ture in natural language using 
omputer algorithms.In this se
tion we make this des
ription more 
on
rete by des
ribing some popularinformation extra
tion tasks (se
tion 2.1.1) and by des
ribing the typi
al pro
essof developing an information extra
tion method (se
tion 2.1.2).11
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Word sense disambiguation :

Named entity recognition :

Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 .
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Part-of-speech tagging :

Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . CD NN
S

IN NN
P
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NN , CC NN
P
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P

VD
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Figure 2.1: Example information extra
tion tasks: word sense disambiguation,named entity re
ognition and part-of-spee
h tagging.2.1.1 Important information extra
tion tasksWe have previously des
ribed how histori
ally synta
ti
 senten
e parsing was the�rst extensively studied IE task. Today a lot of resear
h is still performed onparsing, but other IE tasks are also being extensively resear
hed, of whi
h wedes
ribe some in this se
tion. This will help to highlight the shared points in thesedi�erent tasks and will help to situate the IE tasks studied in this thesis.Word sense disambiguation The task of word sense disambiguation is to segmenta text and to assign a label to every noun phrase, (non-auxiliary) verb phrase,adje
tive and adverb in a text. This label indi
ates the meaning for that parti
ularword and is 
hosen from a di
tionary of meanings for a large number of di�erentphrases. For example, in �gure 2.1 the word �got� has been assigned the labelget.04 from the WordNet lexi
al database, indi
ating that �got� in this 
ontextmeans �re
eive, obtain, in
ur�.Named entity re
ognition Named entity re
ognition dete
ts names and numbersin a text and 
lassi�es these a

ording to a small set of labels, usually in
ludingperson, organization, lo
ation and date. In �gure 2.1 both �Davis� and�George Bush� are person names and �Saturday� is a date.Part-of-spee
h tagging This IE task assigns a synta
ti
 label to every word in asenten
e. These synta
ti
 labels re�e
t the grammati
al 
ategory of every word in
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Syntactic sentence parsing :

Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . 
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Semantic role labeling :

Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . 
A1 AM-LOCA0

receive.01

A1A0

get.01

Figure 2.2: Example information extra
tion tasks: synta
ti
 senten
e parsing andsemanti
 role labeling.the given senten
e. In �gure 2.1 for example the word �Davis� is assigned �NNP�,�re
eived� is assigned �VBD� and �votes� �NNS�.Synta
ti
 senten
e parsing1 In synta
ti
 senten
e parsing the 
omputer programdetermines the grammati
al stru
ture of a given senten
e. Depending on thegrammar, this often 
omes down to �nding the synta
ti
 tree for a parti
ularsenten
e. The words in the senten
e are leafs in this tree and internal nodes ofthe tree are phrases with a synta
ti
 label, i.e. np for noun phrase or vp forverb phrase. In �gure 2.2 the senten
e has been parsed using the Penn Treebank
onstituen
y grammar (Mar
us et al., 1994). It indi
ates, among others, the part-of-spee
h tag for every word (e.g. nnp for �Davis�, vdb for �re
eived�) and thestru
ture of the senten
e: two independent 
lauses 
onne
ted by the 
onjun
tion�and�.1In our des
ription of information extra
tion we do not distinguish between an analysis thatfo
uses on the semanti
s, i.e. the meaning of words or phrases, an analysis that fo
uses on thesynta
ti
 properties of natural language or an analysis that fo
uses on the dis
ourse of a parti
ulartext. In our experien
e these di�erent tasks re�e
t di�erent goals but are very often solved withidenti
al, or very similar te
hniques. Furthermore there are many tasks (e.g. semanti
 rolelabeling, see 
hapter 4) that straddle these di�erent 
ategories.



14 FOUNDATIONSSemanti
 role labeling Semanti
 role labeling (SRL) annotates every non-auxiliary verb in a senten
e with a stru
ture 
alled a semanti
 frame. A semanti
frame 
onsists of a predi
ate label that indi
ates the meaning of the verb, and anumber of semanti
 roles. A semanti
 role is a label for a phrase in the senten
eindi
ating that this phrase is an argument to that verb. In �gure 2.2 for examplethe verb �re
eived� has predi
ate label re
eive.01 with meaning �get,gain� andsemanti
 roles �Davis� with label a0 (re
eiver), �1119 votes� with label a1 (thingre
eived) and �in Saturday's ele
tion� with label am-lo
 (lo
ation). Note thatthe predi
ate label get.01 for the verb �get� is di�erent from the synset labelget.04 (�gure 2.1) sin
e they are labels from two 
ompletely unrelated databases(i.e. PropBank and WordNet).In this thesis we study word sense disambiguation (WSD) and semanti
 rolelabeling (SRL). These two tasks highlight di�erent di�
ulties for informationextra
tion tasks. The output of WSD is a single label for every word and thedi�
ulty of this task lies mainly in the 
orre
t sele
tion of the label, where labelshave �ne-grained distin
tions in meaning that have to be determined from the
ontext. WSD methods thus often fo
us on 
reating an a

urate model of the
ontext and on methods that are able to learn from only a small number ofexamples per word sense. SRL in 
ontrast involves sele
ting a label for a phrasefrom a very small number of labels. Contrary, the di�
ulty here lies in the fa
tthat these labels need to be stru
tured in a semanti
 frame, and that a single word
an be used simultaneously in di�erent stru
tures.2.1.2 Developing information extra
tion methodsTwo points in the design of automati
 information extra
tion methods havegenerally been the fo
us of attention: feature extra
tion and sele
ting anappropriate ma
hine learning method.2.1.2.1 Feature extra
tingThe des
ribed information extra
tion tasks are generally very easy to performby humans but are extremely hard for 
omputer programs. One of the mainreasons is the representation used to store texts. Where humans have an intuitiveunderstanding whi
h texts express similar events, the 
omputer stores texts aslinear sequen
es of 
hara
ters, where texts with a similar meaning 
an have
ompletely di�erent representations, or where only a small 
hange to the 
hara
ters
an drasti
ally alter the meaning.For this reason one of the most important steps in developing informationextra
tion methods is the mapping of the initial representation of texts to a



DIRECTED BAYESIAN NETWORKS 15representation that is more useful to the task at hand. This step is usually referredto as feature extra
tion, and it involves the 
reation of a set of deterministi
rules that look for 
ertain patterns (e.g. su�xes) in the text. Often one usesthe output of one information extra
tion method to 
reate features for a se
ondmethod. We will for example use the output of a part-of-spee
h tagger in ourword sense disambiguation and semanti
 role labeling methods. On
e the textsare 
onverted to the feature representation, they are passed to a ma
hine learningmethod.2.1.2.2 Ma
hine learning methodsThe task of a ma
hine learning method is to 
ombine the di�erent values ofthe various features into a single predi
tion of the value of the label for thatword or phrase. Many di�erent ma
hine learning methods have been appliedwith su

ess to information extra
tion, su
h as support ve
tor ma
hines (Pradhanet al., 2004), neural networks (Collobert and Weston, 2008) k-nearest neighbour
lassi�ers (Morante et al., 2008) de
ision trees (M
Carthy and Lehnert, 1995) orlogisti
 regression (Snow et al., 2005). In this thesis we limit ourselves to a ma
hinelearning method based on dire
ted Bayesian networks. This framework is amongthe most popular methods for information extra
tion, and it 
an easily be extendedto semi-supervised and unsupervised learning, a fa
t that is used extensively inthe following 
hapters.2.2 Dire
ted Bayesian networksIn this se
tion we introdu
e the framework that is used to develop informationextra
tion algorithms throughout this thesis: dire
ted Bayesian networks. We willformally des
ribe these models (se
tion 2.2.1) and see how we 
an use them ina ma
hine learning setting (se
tion 2.2.2). Finally we present a famous type ofBayesian networks, hidden Markov models (se
tion 2.2.3), whi
h will be used atseveral o

asions in this thesis.We only give an introdu
tion to the aspe
ts of Bayesian networks that are relevantto the presented work, for a more 
omplete treatment we refer to Bishop (2006).2.2.1 Des
ription of graphi
al Bayesian networksA Bayesian network is a dire
ted a
y
li
 graph that represents probabilisti
 de-penden
ies between random variables. A Bayesian network BN = (Nodes,Arcs)
onsists of a 
olle
tion of nodes Nodes = [Node1...NodeN ] and a 
olle
tion of
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rain

sprinklerwetFigure 2.3: Simple Bayesian networkar
s Arcs = [Arc1...ArcM ]. Every node Nodei = (V ali, Domi, Funci) representsa random variable that 
an hold a value V ali ∈ Domi from the domain of thatnode and a probability mass fun
tion Funci that gives a probability distributionon the domain Domi, given the values of the parent of this node. Throughout thistext we will use both variable and node to denote the same 
on
ept, a node inthe Bayesian network, and often we will use Nodei = x as shorthand for V ali = xwhere x ∈ Domi.The 
olle
tion of ar
s Arcs of the network 
apture the dependen
ies between thenodes in the Bayesian network. Arci = (Nodej , Nodek) indi
ates a dire
ted linkfrom Nodej to Nodek. By de�nition, the model represents a fa
torization of thejoint probability of all random variables.De�nition 2.4 The probability distribution of a dire
ted Bayesian network BN =
(Nodes,Arcs) is given by

P (Node1, ..., NodeN ) =

N
∏

i=1

P (Nodei |Parents(Nodei))where Parents(Nodei) denotes the parents of node Nodei

Parents(Nodei) = {Nodej|(Nodej , Nodei) ∈ Arcs}The fa
t that BN's are dire
ted a
y
li
 graphs, ensures that this de
ompositionexists and is unique. As an example we 
onsider the small Bayesian network in�gure 2.3. This network has three nodes rainy, sprinkler, and wet and three ar
s
{(rainy, sprinkler), (rainy, wet), (sprinkler, wet)}, and it represents whether theoutlook is rainy (yes/no), whether the sprinkler was turned on last night (yes/no)and whether the lawn is wet (yes/no). The probability distribution of this networkhas the de
omposition
P (rainy, sprinkler,wet) = P (wet|rainy, sprinkler) × P (sprinkler|rainy) × P (rainy)Some networks will have many variables, for instan
e one variable for every wordin a senten
e w = [w1...wN ] (�gure 2.4a). To represent these networks more
ompa
tly, we only draw one representative node wn and surround this node with
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w
1

w
2

w
K-1

w
K

Label

(a) Without plate notation
Label

w
k

K(b) With plate notationFigure 2.4: Plate notation for Bayesian networksa box, 
alled a plate, labeled with K indi
ating that there are K nodes of thiskind (�gure 2.4b).Another 
onvention that is used in this work, is that when drawing Bayesiannetworks, a variable of whi
h the value is known (i.e. observed) is indi
ated with ashaded 
ir
le, and a variable that has an unknown (i.e. hidden or unobserved) valueis indi
ated with an empty 
ir
le. In �gures 2.4a and 2.4b the nodes indi
ating thewords wk are set to a 
ertain value and are indi
ated with shaded 
ir
les, whilethe value of Label is unknown and indi
ated with an empty 
ir
le.Probability mass fun
tions The Bayesian network tells us how to de
ompose aprobability distribution of the network into probability mass fun
tions (pmf 's) ofsingle nodes2. It however doesn't spe
ify the form of these probability fun
tions.A pmf is de�ned byDe�nition 2.5 A probability mass fun
tion is a fun
tion Funci(x)

Funci(x) : Domi → [0, 1] : V ali → P (V ali = x)with the 
onstraints that P (V ali = x) ≥ 0 and ∑x∈Domi
P (V ali = x) = 1.Examples of frequently used pmf's are the Bernoulli distribution, the Binomialdistribution and the Poisson distribution.Categori
al distribution The probability mass fun
tion that will be used mostoften throughout this work is the 
ategori
al distribution, whi
h is also referred toin literature as a multinomial distribution (e.g. Blei et al. (2003)), although thesedistributions are in fa
t only equivalent if the number of trials of the multinomial2Note that we limit ourselves to dis
rete probability fun
tions, for the more general 
ase, seefor instan
e (Bishop, 2006).



18 FOUNDATIONSdistribution is 1. The parameters of the 
ategori
al distribution is a ve
tor ofvalues [p1...pN ], one for every of the N values in Domi, with the 
onstraints that
0 ≤ pj ≤ 1 and ∑N

j=1 pj = 1. The distribution is then given by a mapping fromevery value xj ∈ Domi to the probability pj of observing this value.
Funci(x) : Domi → [0, 1] : x → pjOther distributions used in this thesis (e.g. the Diri
hlet distribution) will beintrodu
ed when they are used in a parti
ular information extra
tion method.Conditional probability distributions Often we are interested how the probabilitymass fun
tion 
hanges depending on the values of the parents of that node, e.g.we want to model the 
onditional probability distribution.Let us take for example the node sprinkler in �gure 2.3. We 
ould use two di�erent
ategori
al pmf's for this node, one (e.g [0.02, 0.98]) for when its parent node rainhas value yes and one (e.g. [0.30, 0.70]) for when the value of rain is no, re�e
tingthe fa
t that only few people use their sprinklers when the outlook is rainy whilemore people use them when it is not rainy.In the general 
ase, we have to 
onsider nodes that have multiple parents. We 
an
hoose a similar strategy as for the single parent node, where we use a di�erent pmffor every possible 
ombination of values of the parent nodes. E.g. in the example,we 
ould use 4 di�erent 
ategori
al pmf's to model the distribution of wet giventhe 4 
ombinations of values of rainy and sprinkler. A serious disadvantage ofthis approa
h is that usually we want to learn the parameters of these di�erentfun
tions from training examples, and that a di�erent fun
tion for every possible
ombination of values leads to an explosion of parameters. For this reason wewill often use a smarter approa
h: in se
tion 6.1 we interpolate 
ategori
al pmf'sfor di�erent 
ontexts in language modeling, and in se
tion 4.4 we use exponentialmodels to 
ombine information from many features in a dis
riminative model.2.2.2 Ma
hine learning with Bayesian networksThe goal of a supervised ma
hine learning method is to learn, from a set of Nmanually annotated senten
es DA = [(w1, L1)...(wN , LN )], a mapping from asenten
e wi to the label Li. In reality every senten
e wi is �rst transformed toa feature ve
tor Ftri = [Ftr1

i , ..., F trK
i ], where every feature des
ribes a spe
i�
property of the words in the senten
e. Generally, the feature ve
tor 
ontains

1 if that property is present and a 0 if the property is not present. We useBayesian networks in this thesis and 
reate networks that 
ontain variables forboth the features and for the labels to be re
ognized. The stru
ture of the
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i�es the probabilisti
 dependen
ies between thesevariables. In this se
tion we will see some 
on
epts that are important with regardto Bayesian networks in a ma
hine learning setting: the maximum likelihoodestimate, the maximum probability estimate and the di�eren
e between generativeand dis
riminative Bayesian networks.Maximum likelihood estimate During the training phase, we learn the param-eters of our network from a set of labeled examples DA = [(w1, L1)...(wN , LN )].This training set 
ontains N annotated examples that are assumed to beindependent and identi
ally distributed. We use θ to denote the parameters ofthe Bayesian network, whi
h is the union of the parameters of the probabilitymass fun
tions of all the nodes in the network. A number of methods 
an beused to estimate these parameters, generally distinguishing between methods thatassume or do not assume a prior distribution on the parameters, and betweenmethods that �nd a single maximum estimate of the parameters or that model theentire posterior distribution for the parameters. We will usually use the maximumlikelihood estimate (MLE), whi
h does not assume a prior distribution and �nds asingle maximum for the parameters. We de�ne the likelihood fun
tion as:
L(DA|θ) =

N
∏

i=1

P (wi,Ftri|θ)We then �nd the parameters θ su
h that this fun
tion has a maximal value. Thisestimate is guaranteed to produ
e an optimal 
lassi�er for this network, givena 0-1 loss fun
tion (DeGroot, 1970) (1) if the number of examples is su�
ientlylarge and (2) if it is possible to �nd parameters θ su
h that the parametrized jointlikelihood of senten
es and labellings P (wi, Li|θ) equals the true joint likelihood
P (wi, Li), or more informally, if the model is �
orre
t�. This is expressed in thefollowing assumptionAssumption 2.1 Corre
t model assumptionWe 
an �nd parameters θ su
h that P (wi, Li|θ) = P (wi, Li).In our appli
ations both assumptions will generally be violated to some extent,but for supervised models, assumption (1) is generally more important. Sin
e thenumber of samples is always limited, the maximum likelihood estimate might havesome unwanted properties, su
h as assigning zero probability to events that werenever observed in the training set. For this reason we will usually modify the MLE,using a prior distribution (e.g. 
hapter 9) or smoothing te
hniques (e.g. se
tion4.3.2). Although assumption (2) is less important for supervised models, we willsee in 
hapter 5 that for semi-supervised models this assumption is 
riti
al.
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N(b) dis
riminativeFigure 2.5: Example of a generative and dis
riminative Bayesian networkMaximum probability estimate After determining the parameters of the Bayesiannetwork, we 
an use the model to analyze previously unseen texts. For a giventext we �nd the set of values for the unobserved variables (e.g. the labels) su
hthat the joint probability of these variables and of the observed variables (e.g. thewords or features) is maximal. A naive approa
h to �nd this maximum is to try allpossible 
ombinations of variables, whi
h is generally not feasible be
ause of theexponential number of possible 
ombinations. For networks that 
an be dividedin overlapping subnetworks, one 
an employ a dynami
 programming algorithmwhi
h is guaranteed to �nd a global optimal solution (Bellman and Dreyfus, 1962).For other networks one 
an use a beam sear
h that performs a breadth-�rst sear
hbut only keeps the most likely solutions in every step. This method has thedisadvantage that it is not guaranteed to �nd a global optimal solution.Generative and dis
riminative models The number of di�erent Bayesiannetworks that 
an be de�ned is only limited by the 
reativity of the humanmind. However, many tasks have a 
ommon setting where a set of observedvariables represent the input, and a set of hidden variables represent the labelsthat need to be assigned to this input. In an information extra
tion setting forinstan
e, we will represent the texts to be analyzed with a number of features
Ftri = [Ftr1

i , ..., F trK
i ] derived from the word wi, su
h as the lemma, pre�x orsu�x. The (unknown) labels Li are hidden variables that are assigned to everyword wi. Two possible models to represent the dependen
ies between the hiddenand observed variables are shown in �gures 2.5a and 2.5b.The �rst model is a generative model, spe
ifying a joint probability distributionover observations (features) and hidden states (labels), or less pre
ise, try to�explain both labels and features�. Usually generative networks employ the naiveBayes assumption, where all features are 
onsidered independent given the valueof the label. The probability distribution of this network is given by
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P (Li,Ftri) = P (Li) ×

K
∏

k=1

P (Ftrk
i |Li)The probability of the labels given the di�erent observed features is

P (Li|Ftri) =
P (Li) ×

∏K

k=1 P (Ftrk
i |Li)

∏K
k=1 P (Ftrk

i )sin
e ∏K

k=1 P (Ftrk
i ) is independent of the label, we get

P (Li|Ftri) ∼ P (Li) ×
K
∏

k=1

P (Ftrk
i |Li)A dis
riminative Bayesian network is shown in �gure 2.5b. This network spe
i�es a
onditional probability over the hidden states, or less pre
ise, tries only to �explainthe labels�. The probability distribution of this network is given by

P (Li,Ftri) = P (Li|Ftri) × K
∏

k=1

P (Ftrk
i )These models do not model P (Ftri), sin
e the features are always given, and thus

P (Li,Ftri) ∼ P (Li|Ftri) (2.1)This 
onditional pmf needs to 
ombine information from many features, whi
h 
anfor example be modeled with an exponential distribution (Ratnaparkhi, 1998).When 
omparing the performan
e of generative and dis
riminative models, one 
an
ompare the asymptoti
 error, i.e. the error of the model with an unlimited numberof labeled examples, and the varian
e, i.e. the varian
e of the error when only alimited number of labeled examples is given. Generative models generally usethe naive Bayes assumption, 
onsidering all features independent given the valueof the label, and thus make strong modeling assumptions. For this reason theirfeatures 
an be estimated with a small number of training examples, leading to alow varian
e with a limited training set. The independen
e assumption howeverdoes usually not hold in pra
ti
e, whi
h leads to a systemati
 modeling error evenwhen a large number of labeled examples is observed. Dis
riminative models withan exponential distribution do generally not have this disadvantage, and will thusgenerally have a lower asymptoti
 error. They do however need to model the more



22 FOUNDATIONS
L1

Ftr 1
3

Ftr 1
2

Ftr 1
1

L2

Ftr 2
3

Ftr 2
2

Ftr 2
1

L3

Ftr 3
3

...

Ftr 3
2

Ftr 3
1(a) HMM

L1

Ftr 1
3

Ftr 1
2

Ftr 1
1

L2

Ftr 2
3

Ftr 2
2

Ftr 2
1

L3

Ftr 3
3

...

Ftr 3
2

Ftr 3
1(b) MEMMFigure 2.6: Hidden Markov model (HMM) and maximum entropy Markov(MEMM) model.
omplex 
onditional distribution in equation 2.1, requiring more training examples.For more information we refer to Bou
hard and Triggs (2004) and Ng and Jordan(2002).For information extra
tion, dis
riminative models are usually superior (e.g. forword sense disambiguation (Tratz et al., 2007) or semanti
 role labeling (Limet al., 2004)), whi
h is why they are employed here. We will however also 
onsidergenerative models be
ause of the ease with whi
h they 
an be used for semi-supervised learning (
hapter 5).2.2.3 Hidden Markov modelsOne of the more well-known Bayesian networks are hidden Markov models. HiddenMarkov models were �rst used for spee
h re
ognition (Baum et al., 1970; Baker,1975) but have then found a large number of appli
ations, su
h as natural languagemodeling (Manning and S
hütze, 2002), 
hara
ter re
ognition (Nag et al., 1986),part-of-spee
h tagging (Chur
h, 1988; Cutting et al., 1992) and named entityre
ognition (Bikel et al., 1999). These models have a 
ommon stru
ture, shownin �gure 2.6. The network 
onsists of a sequen
e of observed states together witha number of hidden states, and the hidden states are assumed to be dependenton one or more previous hidden states. For example, for spee
h re
ognition, theobserved states are the spe
tral ve
tors of the sound signal during a short periodof time and the hidden states are the phonemes or phones, or for part-of-spee
htagging the observed states are the words in a text (or features derived from thesewords) and the hidden states are the part-of-spee
h tags.Figure 2.6 shows a HMM where a hidden state hi has only a 
onditionaldependen
y with the previous state, a so-
alled �rst order HMM. Sometimeshowever, it 
an be advantageous to take a larger history into a

ount. This givesrise to se
ond order HMM's, where every hidden state is 
onditionally dependenton the two previous states, or to a third order HMM where every hidden state
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onditionally dependent on the three previous states. Enlarging the historydramati
ally in
reases the number of parameters in a model, sin
e the number ofparameters is exponential in the number of hidden states. For example, a se
ondorder HMM for a part-of-spee
h tagger with 25 tags will have more than 15625parameters. We will see in se
tion 6.1 appropriate smoothing methods to over
omethe problem of sparseness that are often asso
iated with models with large numbersof parameters.One of the ni
e properties of HMM's is that e�
ient algorithms exist for trainingand inferen
e. When the hidden states are annotated in the training set (su
has for instan
e when training a supervised part-of-spee
h tagger), the maximumlikelihood parameters of the model 
an be found trivially in a 
losed form solution.Also when one tries to learn the hidden states in an unsupervised manner, andthey have not been annotated in the training set, one 
an use an e�
ient EM-algorithm 
alled the Baum-Wel
h algorithm (Baum et al., 1970). We will dis
ussthis algorithm in detail in se
tion 6.2.2.Also to �nd the most likely values for the hidden variables given a sequen
e ofobserved variables, an e�
ient algorithm exists, the Viterbi algorithm (Viterbi,1967). This algorithm will �nd the globally maximal sequen
e of states in a time
omplexity that is linear in the length of the sequen
e, and quadrati
 (for a �rst-order HMM) or 
ubi
 (for a se
ond-order HMM) in the number of possible valuesfor the hidden states.HMM are by de�nition generative models, and a number of dis
riminativemodels with similar stru
ture and properties have been de�ned, in
ludingmaximum entropy Markov models (Ratnaparkhi, 1996) and 
onditional random�elds (La�erty et al., 2001). Although these models have been found to havesuperior performan
e on a number of information extra
tion tasks, su
h as part-of-spee
h tagging (La�erty et al., 2001) and named entity re
ognition (M
Callumand Li, 2003), they require signi�
antly more 
omplex methods for training, and
an not easily be extended to in
lude hidden variables for semi-supervised training.
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26Outline part I : Supervised information extra
tionIn this part we study the supervised approa
h to information extra
tion, whi
hhas been the dominant approa
h to information extra
tion in the last de
ade. We�rst extra
t a set of features from the word or phrase being labeled, and then usea ma
hine learning method to sele
t he most likely label for this word or phrase.This ma
hine learning method is trained on a large number of manually annotatedexamples.When developing a novel information extra
tion method, the major fo
us is onsele
ting the right types of features and on sele
ting an appropriate ma
hinelearning method. In the framework of dire
ted Bayesian networks this 
omesdown to sele
ting an appropriate stru
ture of the Bayesian network and sele
tinggood probability mass fun
tions. We will demonstrate these te
hniques on twoinformation extra
tion tasks: in 
hapter 3 we develop a model for word sensedisambiguation where the 
ontext is modeled with a large number of features, andin 
hapter 4 we develop a model for semanti
 role labeling where we need tomodel the synta
ti
 role of a word and the relationship between that word to theverb. For both models we will 
ompare a dis
riminative and a generative Bayesiannetwork.The work in this part of the thesis has been partially published in the followingarti
les. Parts of this resear
h have not been previously published.- Koen Des
ha
ht and Marie-Fran
ine Moens. E�
ient Hierar
hi
al EntityClassi�
ation Using Conditional Random Fields. In pro
eedings of the 2ndWorkshop on Ontology Learning and Population, Sydney, 2006.- Koen Des
ha
ht and Marie-Fran
ine Moens. Using the Latent WordsLanguage Model for Semi-Supervised Semanti
 Role Labeling. In pro
eedingsof the 2009 Conferen
e on Empiri
al Methods in Natural LanguagePro
essing (EMNLP 2009), Singapore, August 7, 2009A 
ondensed form of the �rst arti
le was also presented at the 2006 BNAIC
onferen
e:- Koen Des
ha
ht and Marie-Fran
ine Moens. E�
ient Hierar
hi
al EntityClassi�
ation Using Conditional Random Fields, 18th Belgian-Dut
h Con-feren
e on Arti�
ial Intelligen
e, Namur, 2006.



Chapter 3Supervised word sensedisambiguationIn this 
hapter we des
ribe word sense disambiguation, the task of sele
ting theright sense of a word depending on the 
ontext. We introdu
e this task in se
tion3.1, and outline the database of word senses and the training and test 
orpus usedin se
tion 3.2. We then develop an automati
 method for this task where a numberof features to model the 
ontext are used in a generative or dis
riminative Bayesiannetwork in se
tion 3.3. We evaluate these models in se
tion 3.4 and 
on
lude this
hapter in se
tion 3.5.3.1 Introdu
tionA word 
an have di�erent meanings depending on the 
ontext. Take for examplethe following senten
e�The bark sails out of the bay and prepares its 
annons for theimpending �ght.�This senten
e 
ontains a number of ambiguous words, su
h as �bark� (whi
h 
anmean �sailing ship�, �
overing of a tree� or �sound made by a dog�), �sails� (�pie
esof fabri
 to propel a sailing vessel� or �to travel on water propelled by wind�),�
annons� (�heavy artillery guns� or �lower parts of the leg in hoofed mammals�)and ��ght� (�battle� or �boxing or wrestling mat
h�). Although humans 
anintuitively determine the meanings of the words in this senten
e, this is mu
h more
omplex for 
omputer algorithms. Word sense disambiguation (WSD) is usually27



28 SUPERVISED WORD SENSE DISAMBIGUATIONde�ned as the task of sele
ting, from a di
tionary of possible senses for a parti
ularword, the right sense for a parti
ular word in a parti
ular 
ontext. Generally, oneassumes that synta
ti
 disambiguation 
an su

essfully be performed with a part-of-spee
h tagger and that WSD 
an fo
us on distinguishing senses among wordsbelonging to the same synta
ti
 
ategory, e.g. �nding the 
orre
t meaning of �bark�,given that it's a noun.Word sense disambiguation is an important part of natural language pro
essing,sin
e it is a subtask for many tasks, su
h as ma
hine translation, informationretrieval, synta
ti
 parsing, et
. The �rst resear
h on word sense disambiguation
an also be tra
ed to systems that performed ma
hine translation (Weaver, 1955).Sin
e then many WSD systems have been developed, we refer to Ide and Véronis(1998) for an overview. Generally one 
an distinguish three approa
hes to WSD,a symboli
 approa
h, a knowledge-driven approa
h and a data-driven approa
h.Symboli
 methods for WSD were usually embedded in larger systems intendedfor full language understanding. An example is the work by Masterman (1957)who developed a semanti
 network to derive representations of senten
es in aninterlingua. In the knowledge-driven approa
h an external knowledge sour
e isused to �nd the meaning of a parti
ular word in a 
ertain 
ontext. A popularknowledge-driven method is for instan
e to 
ompare the di
tionary entries for aparti
ular word with the di
tionary entries for words surrounding this word, andsele
t the entry that has the largest number of overlapping words with the entriesof surrounding words (Lesk, 1986). In a data-driven approa
h, all ambiguous wordsin a 
olle
tion of texts are annotated with the 
orre
t sense. A ma
hine learningapproa
h 
an then be used to learn a 
lassi�er for the 
orre
t model of the 
ontextfor a parti
ular sense. An example of early work using this approa
h is Bla
k(1988).Today arguably the best 
omparisons of di�erent WSD systems are the Senseval(Snyder and Palmer, 2004) and SemEval (Pradhan et al., 2007) workshops, wherethe top ranking systems use ma
hine learning methods that employ large numbersof features extra
ted from the 
ontext (e.g. Tratz et al. (2007)). These featurestypi
ally 
apture 
ontextual information (e.g. words surrounding the 
urrentword), synta
ti
 information (e.g. subje
t, obje
t) and semanti
 information (e.g.named entities types in the 
ontext).3.2 WordNetWe use the WordNet di
tionary of senses, whi
h is arguably the most 
ommonlyused database for word sense disambiguation. This allows us to 
ompare our workwith the best performing systems from the SemEval workshop (Pradhan et al.,2007).
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Figure 3.1: Fragment of the WordNet hypernym/hyponym tree3.2.1 Des
riptionWordNet (Fellbaum, 1998) is a lexi
al database that organizes English nouns, verbsand adje
tives in synsets. A synset is a 
olle
tion of words that are synonyms, orthat are 
losely related and that represent a single 
on
ept or entity. An exampleof su
h a synset is �person, individual, someone, somebody, mortal, soul�, referringto a human being. The 155.327 words in WordNet (v2.1) are organized in 117.597synsets. Additionally, WordNet de�nes a number of relations between synsets,su
h as the holonym, meronym, pertainym, and the important hypernym relation.A word X is a hypernym of a word Y if Y is a subtype or instan
e of X . Forexample, �bird� is a hypernym of �penguin�. This relation organizes the synsets ina hierar
hi
al tree of whi
h a fragment is pi
tured in �g. 3.1.For a given word, we 
an list all the synsets that 
ontain this word. The task ofWSD using WordNet thus 
omes down to sele
ting the 
orre
t synset out of allpossible synsets for a parti
ular word.3.2.2 Training and test 
orpusWe used the Sem
or 
orpus (Fellbaum, 1998; Landes et al., 1998) for training. This
orpus, whi
h was 
reated at the Prin
eton University, is a subset of the EnglishBrown 
orpus 
ontaining almost 700,000 words. Every senten
e in the 
orpus is
hunked into noun and verb phrases. The 
hunks are tagged by part-of-spee
h andboth noun and verb phrases are tagged with their WordNet sense. To be able to
ompare our system with other systems, we use the test data from the Senseval3workshop (Snyder and Palmer, 2004), whi
h has been prepro
essed in a similarmanner.



30 SUPERVISED WORD SENSE DISAMBIGUATION3.2.3 Evaluation metri
We evaluate our system with the o�
ial s
orer of the Senseval3 workshop1. Thiss
orer measures the a

ura
y of the assigned labels, i.e.
acc =

Ncorr

Nuwhere Ncorr is the number of phrases that is assigned the 
orre
t label and Nu isthe total number of phrases in the test set.3.3 Supervised WSD modelsIn this se
tion we dis
uss the models we have developed for WSD. We �rst dis
ussthe features employed (se
tion 3.3.1), and then dis
uss a generative (se
tion 3.3.2)and a dis
riminative model (se
tion 3.3.3).3.3.1 FeaturesThe features used in our system for WSD are mainly based on Tratz et al. (2007).Contextual information The 
ontextual information we use 
onsists of theword lemmas on either side of the word, within a 
ertain window and withinsenten
e boundaries. Lemmatisation of words, i.e. mapping a word to its
anoni
al form (e.g. �runs�→�run�, �is�→�be�), is performed by an automati
program, part of the WordNet pa
kage2.Synta
ti
 information We parse the senten
es in their grammati
al stru
tureusing an automati
 parser (Nivre et al., 2006) and in
lude grammati
aldependen
ies (e.g. subje
t, obje
t) and morpho-synta
ti
 features su
h aspart-of-spee
h, 
ase, number and tense. Features are extra
ted for all tokensfor whi
h the distan
e to the word to be disambiguated is smaller then 4ar
s in the dependen
y tree.Semanti
 information We in
orporate named entity types (e.g. person,lo
ation, organization). We use OpenNLP and LingPipe to identifynamed entities, repla
ing the strings identi�ed as named entities with the
orresponding entity type. We also repla
e numbers in the text with thetype label number.1Available from http://www.senseval.org/senseval3/s
oring2Available from http://wordnet.prin
eton.edu/
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riminative modelFigure 3.2: Bayesian networks for supervised word sense disambiguation. n is theindex of the word out of N words, k the index of the feature out of K features.Hypernyms Hypernyms are retrieved from WordNet and added to the featureset for all noun tokens sele
ted by the 
ontextual and synta
ti
al rules.We in
lude the hypernyms of the most frequent sense, and we in
lude theentire hypernym 
hain (e.g. �motor�, �ma
hine�, �devi
e�, �instrumentality�,�artifa
t�, �obje
t�, �whole� and �entity�).3.3.2 Generative WSD modelOur �rst method for WSD uses the network shown in �gure 3.2a. This networkhas two types of nodes, Ftrk
i and Synseti, representing the features and the synsetof a parti
ular word wi. Categori
al pmf's are asso
iated with the Synseti nodeand with every individual Ftrk

i node respe
tively. The probability distribution ofthe network is given by
P (Synseti,Ftri) = P (Synseti) ×

K
∏

k=1

P (Ftrk
i |Synseti)This model is a generative model that assumes that all features are independent,given the synset of the word. The parameters of the 
ategori
al distributionsare determined using the maximum likelihood estimate, smoothed with a �xed
onstant. For example, we estimate P (Ftrk

i |Synseti) as
P (Ftrk

i |Synseti) =
c(Ftrk

i , Synseti) + α

c(Synseti) + αKwhere c(Ftrk
i , Synseti) is the number of times the feature Ftrk

i is present inthe training set for a word with synset Synseti, c(Synseti) is the number ofo

urren
es of Synseti in the training set, α is a positive smoothing 
onstant and
K is the number of unique features.



32 SUPERVISED WORD SENSE DISAMBIGUATIONmodel nouns verbs adje
tives allgenerative 57.98 56.43 50.78 55.15dis
riminative 65.12 68.15 54.10 66.32Table 3.1: Results for the generative and dis
riminative models for WSD on theSenseval3 test set in terms of % a

ura
y.3.3.3 Dis
riminative WSD modelWe 
ompare the generative model with a dis
riminative model, shown in �gure3.2b. Although the network has the same nodes, the dire
tion of the dependen
yis reversed. The probability distribution is given by
P (Synseti,Ftri) = P (Synseti|Ftri) × K

∏

k=1

P (Ftrk
i )

∼ P (Synseti|Ftri)We model the pmf of P (Synseti|Ftri) as an exponential distribution, of whi
h theparameters are estimated a

ording to the maximum entropy prin
iple. Sin
e thereis no 
losed form solution to �nd this maximum we turn to an iterative method.In this work we use generalized iterative s
aling3, although other maximizationmethods 
an also be used. Although the maximization method used will have littlein�uen
e on the �nal results, more advan
ed methods (su
h as (quasi-) Newtonoptimization) often have a mu
h lower time 
omplexity. The pmf of the featuresis not modeled, sin
e these probabilities do not in�uen
e the relative 
onditionalprobabilities of the labels.3.4 Evaluation of supervised WSD modelsFor the generative and dis
riminative models des
ribed above we sele
t, from the
5 di�erent types of features des
ribed above the 
ombination with a maximal s
oreon a held out set4. For the generative model this is the 
ombination of featuresContextual information and Synta
ti
 information and for the dis
riminativemodel the 
ombination Contextual information, Synta
ti
 information, Seman-ti
 information and Hypernyms. This is in a

ordan
e to the 
ommon observation3We use the maxent pa
kage available on http://maxent.sour
eforge.net/4To sele
t the best features we train the model on 90% of the Sem
or 
orpus and use 10% to
ompute the a

ura
y of the model for a 
ertain 
ombination of features.



CONCLUSIONS OF THIS CHAPTER 33that dis
riminative models are more su

essful in 
ombining larger number offeatures 
ompared to generative models. The reason for this is that generativemodels assume that features are 
onditionally independent, and a larger numberof di�erent types of features are more likely to 
apture dependen
ies that violatethis assumption.We then train the model on the Sem
or 
orpus and evaluate on the Senseval3
orpus. We see from the results in table 3.1 that the dis
riminative modeloutperforms the generative model, with more than 10% di�eren
e in a

ura
y.Both models perform best for verbs and nouns, and �nd disambiguation ofadje
tives parti
ularly hard. This is a trend that is observed for most word sensedisambiguation systems. Comparing our results to others, we see that our a

ura
yis state-of-the-art, slightly higher (De
adt et al., 2004; Kohomban and Lee, 2005;Mihal
ea and Faruque, 2004) or lower (Tratz et al., 2007) than others.It is intriguing that no systems seems to a
hieve more than 70% a

ura
y onthis dataset. The reason for this is the very �ne-grained distin
tions in meaningbetween di�erent WordNet senses. Take for example the noun �man�. This nounhas 11 di�erent senses, of whi
h three are �the generi
 use of the word to refer toany human being�, �all of the living human inhabitants of the earth� and �any livingor extin
t member of the family Hominidae 
hara
terized by superior intelligen
e,arti
ulate spee
h, and ere
t 
arriage�. It is 
lear that in a given text, sele
tingthe 
orre
t synsets from this set is a non-trivial task, even for humans. For thisreason some people have proposed to merge WordNet synsets that are very 
lose inmeaning, 
reating so-
alled super-senses, whi
h allow automati
 systems to a
hievemu
h higher a

ura
ies. We have not pursued this approa
h here.3.5 Con
lusions of this 
hapterWe have presented a supervised approa
h to word sense disambiguation. We usea number of features to model the 
ontext of a parti
ular word within a 
ertainwindow, where we use the words in the 
ontext, synta
ti
 information, namedentities and hypernyms of the words o

urring in this window. These features wereused in two supervised 
lassi�ers, a generative and a dis
riminative 
lassi�er. Forboth 
lassi�ers we found the optimal 
ombination of features, and noti
ed that thedis
riminative model 
ould 
ombine a larger number of non-independent features,whi
h 
an be explained by the independen
e assumption made by generativemodels. Upon evaluation on the test set we found that the dis
riminative modeloutperforms the generative model, and that its performan
e is very 
lose to thestate-of-the-art.





Chapter 4Supervised semanti
 rolelabelingIn this 
hapter we address the se
ond information extra
tion task that will serve asa ben
hmark of the herein proposed information extra
tion methods: semanti
 rolelabeling (SRL). This information extra
tion task has a long history in linguisti
s,whi
h we will brie�y dis
uss in se
tion 4.1. We use the PropBank de�nitions ofsemanti
 roles, whi
h we introdu
e in se
tion 4.2, and in se
tion 4.3 we dis
uss thefeatures and the two models that are used to ta
kle this task. We evaluate thesemodels in se
tion 4.4 and 
on
lude this 
hapter in se
tion 4.5.4.1 Ba
kgroundSemanti
 roles and semanti
 frames have a long tradition in linguisti
s (Fillmore,1968; Gruber, 1970) where semanti
 frames are often de�ned as s
ript-likestru
tures of 
ommon a
tions or situations and semanti
 roles as typi
alparti
ipants of, or arguments for, these a
tions or situations. Histori
ally, semanti
frames were proposed as a fundamental building blo
k used by people to organizetheir memory and 
on
eive the world, e.g. S
hank and Abelson (1977).Today, semanti
 role labels are usually interpreted as annotations of senten
e
onstituents (e.g. noun phrases) that 
lassify the meaning of the 
onstituentwith regard to a verb in the senten
e (e.g. by assigning a label to parts ofthe senten
e that answers �who�, �where�, �when�, ... for a parti
ular verb).The term semanti
 frame is used to refer to the semanti
 roles for a parti
ularverb together with a 
lassi�
ation of the verb a

ording to a set of prede�ned35



36 SUPERVISED SEMANTIC ROLE LABELINGmeanings. This provides an analysis of the senten
e that 
an be situated betweena grammati
al (e.g. synta
ti
 senten
e parsing) and semanti
 analysis (e.g. wordsense disambiguation), and o�ers a semanti
 stru
ture that generalizes a
rossdi�erent synta
ti
 alternations of expressing identi
al 
ontent (Palmer et al.,2005). These stru
tures have been used in a wide range of appli
ations, su
has in dete
ting and �lling templates from texts that des
ribe market �u
tuations(Surdeanu et al., 2003), sele
ting 
orre
t answers to natural language questions(Narayanan and Harabagiu, 2004; Shen and Lapata, 2007), 
reating a shortsummary of a set of do
uments (Melli et al., 2005), translating texts from onelanguage to another (Boas, 2002) dete
ting subje
tive verbs and their arguments(Bethard et al., 2004) and automati
 text-to-s
ene 
onversion for tra�
 a

identreports (Johansson et al., 2005).A number of 
olle
tions of semanti
 roles have been de�ned, di�ering in underlyingtheoreti
al assumptions and goals. Three popular 
olle
tions are FrameNet (Bakeret al., 1998), VerbNet (Levin, 1993) and PropBank (Palmer et al., 2005). Analternative approa
h to semanti
 role labeling is the framework developed byHalliday (1994) and implemented by De Busser et al. (2002) and Mehay et al.(2005). PropBank has thus far re
eived the most attention of the NLP 
ommunity,and is used in our work.4.2 PropBank4.2.1 Des
riptionThe PropBank proje
t (Palmer et al., 2005) de�nes for a large 
olle
tion of verbs aset of predi
ates that re�e
t the di�erent senses of the verb. The predi
ates of theverb �run� for example in
lude run.01 �operate, pro
eed�, run.02 �walk qui
kly�and run.03 �
ost�. Every predi
ate label has a number of roles, where label A0is assigned to the most prominent argument in the senten
e (A1 for una

usativeverbs) and labels A1 to A5 are assigned to other salient arguments for that verb(Merlo and van der Plas, 2009). Table 4.1 lists the semanti
 roles for a sele
tionof verb senses. Although roles are de�ned for every predi
ate separately, in realityroles with identi
al names tend to be synta
ti
ally and semanti
ally similar forall predi
ates, a fa
t that is exploited to train a

urate role 
lassi�ers. A smallnumber of arguments is shared among all senses of all verbs, su
h as temporals(AM-TMP), lo
atives (AM-LOC ) and dire
tionals (AM-DIR).Additional to the frame de�nitions, PropBank has annotated a large training
orpus 
ontaining approximately 113.000 annotated verbs. An example of anannotated senten
e is



PROPBANK 37role run.01 debate.01 shoot.02A0 operator debater shooterA1 ma
hine, pro
edure thing dis
ussed 
orpseA2 employer person debated against gunA3 
o-worker - lo
ation of woundA4 instrumental - -Table 4.1: Semanti
 roles in PropBank for a sele
tion of verb senses: run.01�operate, pro
eed�, debate.01 �to dis
uss� and shoot.02 �kill with a gun�.[John A0℄ [breaks break.01℄ [the window A1℄ [with a ro
k A2℄.Here break.01 is the �rst sense of the verb �break� with meaning �
ause to notbe whole�. John has the semanti
 role A0 �the breaker�, �the window� has role
A1 �thing broken� and �with a ro
k� has role A2 �instrument�. The semanti
 rolelabeling is preserved a
ross di�erent synta
ti
 realizations. In, for instan
e, theannotated senten
e � [The window A1℄ [broke break.01℄.�, �the window� has a di�erentsynta
ti
 position but is also assigned role A1. Although we will in generally talkabout labeling semanti
 roles, our systems also perform, and are evaluated on,identi�
ation of the 
orre
t predi
ate label for the verb (see se
tion 4.2.3).A senten
e with multiple verbs has a separate role labeling for every verb. In forexample the senten
e�Big investment banks refused to step up to the plate.��Big investment banks� is labeled as A0 �entity refusing� for the verb �refused� andas A1 �thing moving� for the verb �step�. Note that semanti
 role labeling systemstypi
ally assume that a frame is fully expressed in a single senten
e and thus donot try to instantiate roles a
ross senten
e boundaries.4.2.2 CorpusWe perform our experiments on a standard 
orpus for semanti
 role labeling, usedin the CoNLL 2008 shared task (Surdeanu et al., 2008)1. The senten
es in the
orpus are mainly taken from news texts in the English language from the WallStreet Journal (from the Penn Treebank 
orpus (Mar
us et al., 1994)) and a smallsele
tion of English texts from 15 di�erent sour
es, in
luding news texts, non-�
tional and �
tional stories and book reviews (from the Brown 
orpus (Fran
is,1Although the CoNLL 2008 shared task evaluated semanti
 role labeling on both verb andnoun phrases, we limit ourselves to semanti
 role labeling on verbs.
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orpus is split into three disjoint parts, for training (39279 senten
es),testing2 (2824 senten
es) and a held-out se
tion (1334 senten
es). The manualannotations of the senten
es are the annotations from the PropBank 
orpus, butare 
onverted from labels for 
onstituents to labels for head words. For example,the annotated text � [John A0℄ [breaks break.01℄ [the window A1℄ [with a ro
k A2℄.�in the PropBank 
orpus is 
onverted to � [John A0℄ [breaks break.01℄ the [window
A1℄ [with A2℄ a ro
k.�. For details on this 
onversion, we refer to (Surdeanu et al.,2008).4.2.3 Evaluation metri
To evaluate the output of our automati
 SRL system we use the evaluation metri
used in the CoNLL 2008 shared task (Surdeanu et al., 2008). The evaluation metri

ounts the number of 
orre
t labels, i.e. predi
ate labels and semanti
 role labels.A predi
ate label is 
onsidered 
orre
t if the label 
orresponds to the label in themanual annotation for that verb. A role label for a parti
ular word is 
onsidered
orre
t if the label 
orresponds to the label in the manual annotation for thatword, independently of the label of the verb for that role. This s
oring strategyimplies that if a system assigns an in
orre
t predi
ate label, it still re
eives somepoints for the arguments 
orre
tly assigned.For a given test set, Ncorr is the number of predi
ates and role labels that are
orre
tly 
lassi�ed, Nman is the number of predi
ates and role labels in the manualannotation and Nauto is the number of predi
ates and role labels in the automati
annotation. Pre
ision, re
all and F1-measure are de�ned as
precision =

Ncorr

Nauto

recall =
Ncorr

Nman

F1 = 2 ∗
precision ∗ recall

precision + recall4.3 Supervised SRL modelsWe will now dis
uss the models used for semanti
 role labeling. We �rst dis
ussthe features used to represent the input text (se
tion 4.3.1) and then 
onsider twodi�erent models, based on a generative (se
tion 4.3.2) and dis
riminative (se
tion4.3.3) Bayesian network.2In the shared task the test set is split in a set with senten
es from the Wall Street Journaland a set with senten
es from the Brown 
orpus. We perform our experiments on all senten
esfrom both sets.
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Davis  received  1119  votes  in  Saturday 's  election , and  George Bush  got  402 . Figure 4.1: Example of the path feature extra
ted from the synta
ti
 parse tree.The path �nns^np^in^pp^s_s_vp_vdb� is traversed going from �votes� to �re
eived�.4.3.1 FeaturesEvery word in the CoNLL 2008 
orpus is tagged with its part-of-spee
h by anautomati
 tagger (Ciaramita and Altun (2006), using the Penn Treebank tags)and a synta
ti
 dependen
y tree is 
onstru
ted for every senten
e by an automati
parser (Nivre et al., 2006). These automati
 annotations are, together with theword tokens, 
onverted to a number of features used in our semanti
 role labeling
lassi�ers. These features (ex
ept Split path) have been previously dis
ussed, seefor example (Gildea and Jurafsky, 2002; Lim et al., 2004; Thompson et al., 2006).The number in bra
kets in the following list denotes the number of unique featuresfor that type in the CoNLL 2008 
orpus.Word Unigram word tokens, in
luding pun
tuation. (37079)Stem Word tokens redu
ed to their stem, e.g. �walks� -> �walk�. (28690)POS The part-of-spee
h tag for every word, e.g. �NNP�. (77)Neighbor POS's The 
on
atenated part-of-spee
h tags of the word before andthe word just after the 
urrent word, e.g. �RBS_JJR�. (1787)Path This important feature des
ribes the path through the dependen
y tree fromthe 
urrent word to the position of the predi
ate, e.g. �nns^np^in^pp^s_s_vp_vdb�in �gure 4.1, where `↑' indi
ates going up a 
onstituent and `↓' going downone 
onstituent. (829642)Split Path Be
ause of the nature of the path feature, an explosion of uniquefeatures is found in a given data set. We redu
e this by splitting the pathin di�erent parts and using every part as a distin
t feature. We split, forexample, the previous path in 8 di�erent features: �nns�, �↑np�, �↑in�, �↑pp�,�↓s�, �↓s�, �↓vp�,�_vdb�. Note that the split path feature in
ludes the POSfeature, sin
e the �rst 
omponent of the path is the POS tag for the 
urrentword. This feature has not been used previously for semanti
 role dete
tion.(155)
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Figure 4.2: Generative model for SRL. m is the index of the senten
e, out of a
orpus of M senten
es, j is the index of the 
urrent predi
ate, out of Nm words inthe senten
e and k is the index of the feature, out of K features.Child words The word tokens of the 
hildren in the dependen
y tree of the
urrent word, if any (34518).Child POS's The POS tag of the 
hildren in the dependen
y tree of the 
urrentword, if any (77).Although most of the des
ribed features are independent of the predi
ate verb, thevalue of Path and Split_path di�ers with regard to the predi
ate verb. For thisreason we use Ftrji = [Ftr1
ji...F trK

ji ] to denote the K features of role rji, where jindi
ates the index of the predi
ate verb.4.3.2 Generative SRL modelThe generative Bayesian network for semanti
 roles used in this work is very similarto the network proposed in (Thompson et al., 2006) where it is used for semanti
frame dete
tion and 
lassi�
ation on the FrameNet data set.3For a parti
ular verb wj at position j in senten
e sm and labeling Lj = (Predj , rj),where Predj is the predi
ate label and rj = [rj1...rjN ] are the role labels for allother words in the senten
e, the model is de�ned as in �g. 4.2. The modelassumes that the predi
ate label Predj generates the features Ftrjj and generates3The only major di�eren
e is that in (Thompson et al., 2006) the model is not a fully generativemodel, sin
e the predi
ate label is generated by the predi
ate verb. In our model we assume thatthe predi
ate label generates the predi
ate verb. This way the model is a fully generative modelthat 
an be used for semi-supervised learning (see 
hapter 5).
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Figure 4.3: Dis
riminative model for SRL. m is the index of the senten
e, out ofa 
orpus of M senten
es, j is the index of the 
urrent predi
ate, out of Nm wordsin the senten
e and k is the index of the feature, out of K features.a sequen
e of role labels rj , where every role rji is dependent on the previous role
rji−1. Finally, every role rji, i 6= j, generates the features Ftrji.The probability distribution of this network is given by

P (Predj , rj ,Ftrjj) = P (Predj) ×
N
∏

i=1

P (rji|Predj , rji−1)

×
K
∏

k=1

P (Ftrk
jj |Predj) ×

N
∏

i=1

K
∏

k=1

P (Ftrk
ji|rji)We assign a 
ategori
al distribution to the Predj node, and a 
olle
tion of
ategori
al distributions to the rji and Ftrk

ji nodes, one for every 
ombinationof values of their parents. Given an unlabeled senten
e wm = w1, ..., wN andpredi
ate word wj , we �nd the labeling Lj with the highest probability P (Lj ,wm).Given the predi
ate label pj , the model is equivalent to a Hidden Markov Modelmodel, and the optimal labeling Lj 
an easily be found using the Viterbi algorithm(Viterbi, 1967). To �nd the optimal predi
ate label pji, we run the Viterbialgorithm for every value of the predi
ate label and �nd the maximum produ
t ofthe prior probability of the predi
ate and the role labels for that predi
ate.4.3.3 Dis
riminative SRL modelSin
e dis
riminative models have been found to outperform generative models(Lim et al., 2004) for SRL, we propose an additional dis
riminative model. The



42 SUPERVISED SEMANTIC ROLE LABELING5%L 20%L 50%L 100%LSupervised generative model 38.03% 54.42% 58.38% 68.33%Supervised dis
riminative model 40.49% 67.23% 74.93% 78.65%Table 4.2: Results (in F1-measure) for the fully supervised generative anddis
riminative models, using di�erent fra
tions of the CoNLL 2008 training set.Results are average over 10 random subsets.stru
ture of the model (�g. 4.3(b)) is similar to the previous generative model,although the dependen
ies have been reversed. The model assumes that the rolelabel rji for the word wi is 
onditioned on the features Ftrji and on the role label
rji−1 of the previous word, and that the predi
ate label Predj for word wj is
onditioned on the role labels rj and on the features Ftrji. The likelihood of thismodel is given by

P (Predj , rj ,Ftrj1, ) = P (Predj |rj ,Ftrjj) ×
N
∏

i=1

P (rji|Ftrji, rji−1, P redj)This model 
an be seen as an extension of the standard maximum entropy Markovmodel (Ratnaparkhi, 1996) with an extra dependen
y on the predi
ate label.4.4 Evaluation of supervised SRL modelsFor both 
lassi�ers we 
hoose the sets of features used by that 
lassi�er as theset that gave best performan
e when training the 
lassi�er on the full trainingset and testing on a held-out set, disjoint from both training and test set. Forthe generative model this was the features Stem, Neighbor POS's, Path and Childwords, and for the dis
riminative model, Word, Stem, Neighbor POS's, Split pathand Child words.We perform a number of experiments where we 
ompare the performan
e of thegenerative and dis
riminative models on training sets of di�erent size. We performexperiments with 5%, 20% and 50% and 100% of the full training set. If only asubset of the training examples is used we perform 10 di�erent experiments withrandom subsets and average the results. A �rst 
on
lusion that 
an be drawn fromtable 4.2 is that the dis
riminative model outperforms the generative model for allsizes of the training set. This 
an be attributed to the superior maximum entropyparameter estimation method 
ompared to the maximum likelihood 
ombined withthe naive Bayes assumption. Furthermore we see that this di�eren
e be
omessmaller when training on smaller training sets, suggesting that the NB might



CONCLUSIONS OF THIS CHAPTER 43prove useful for small training sets. The good performan
e of the NB 
lassi�er onsmall training sets was also observed by Nigam et al. (1999).We perform an informal error analysis. Generally speaking errors are 
ausedby two phenomena: ambiguity and underspe
i�
ation. Ambiguity is 
ommon tonatural language, and is in this setting mainly 
aused by words that have multiplemeanings (e.g. the verb �run� that 
an mean �operate� and �walk qui
kly�) :�Mr. Stroma
h wants to resume a more in�uential role in running the
ompany.�and �[...℄ insuran
e generally runs a poor se
ond to any dire
t investmentyou might make.�Underspe
i�
ation o

urs when words in the test set (or other new do
uments)are en
ountered that have not been seen in the training set. For example, in thefollowing senten
e from the test set�The dark forms moved like mourners on some no
turnal pilgrimage,their dirge unsung for want of vo
al 
hords.�the words �mourners� �no
turnal�, �pilgrimage�, �dirge� and �unsung� have notbeen observed in the training set (nor have their lemmas). In fa
t, 27.80% of thesenten
es in the test set of the CoNLL 2008 shared task 
ontain one or more wordsof whi
h the lemmas are not present in the training set.4.5 Con
lusions of this 
hapterIn this 
hapter we have dis
usses semanti
 role labeling. We have developed anautomati
 method for this task that uses a number of features that 
apture theword, synta
ti
 properties of the word and the synta
ti
 relationship between theword and the predi
ate verb. We developed a dis
riminative and a generative
lassi�er and trained these on an annotated 
orpus. Upon evaluation we found thatthe dis
riminative 
lassi�er outperforms the generative 
lassi�er, whi
h 
an mostlikely be attributed to the strong naive Bayes assumption made by the generative
lassi�er. We saw however that for smaller sizes of the training set the performan
eof the generative model was 
omparable to that of the dis
riminative model.Although the dis
riminative 
lassi�er a
hieves state-of-the-art performan
e, itsa

ura
y is not fully satisfying. This 
an be attributed to the ambiguity and



44 SUPERVISED SEMANTIC ROLE LABELINGsparseness of natural language, and to the fa
t that often only a limited numberof examples is present in the training set for a 
ertain label.Underspe
i�
ation and ambiguity are fundamental problems to natural languagepro
essing that need to be addressed by every automati
 method. Modern ma
hinelearning methods have already been a large step forwards 
ompared to manually
onstru
ted rules, but still have important limitations. In 
hapters 5, 6 and 7we will address the problem of underspe
i�
ation by augmenting the annotatedtraining set with large amounts of unlabeled data. Additionally the methoddeveloped in 
hapter 6 provides an automati
 method for the disambiguation ofambiguous words.
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46Outline part II : Weakly supervised information extra
tionDire
ted Bayesian networks 
an be used to solve some information extra
tiontasks with a high a

ura
y. Examples of su
h tasks are part-of-spee
h taggingand named entity re
ognition. For other tasks however this approa
h does notresult in a satisfa
tory solution. We have seen in the previous 
hapter, how themodels for word sense disambiguation and semanti
 role labeling a
hieve onlya limited a

ura
y. This is not only observed for Bayesian networks, but alsofor other 
urrent ma
hine learning methods. The fundamental problem is thata supervised 
lassi�er is given by de�nition only a limited number of annotatedexamples. Natural language is however very varied, and even a very large trainingset will only 
ontain a fra
tion of all possible words and phrases.In part II of this thesis we develop a number of solutions to this problem. In
hapter 5 we fo
us on semi-supervised learning, whi
h is traditionally proposedas a solution to the underspe
i�
ation problem. Semi-supervised learning uses adata set of labeled and unlabeled examples when training information extra
tionmethods. We study semi-supervised methods based on generative Bayesiannetworks with hidden variables. We will see how the parameter estimation methodsintrodu
ed in 
hapter 2 
an easily be extended to the semi-supervised 
ase.We then propose a di�erent approa
h to weakly supervised learning: �rst learnstatisti
s or stru
tures from unlabeled data using an unsupervised model, andin a se
ond step use these statisti
s or stru
tures as additional information ina supervised model. In 
hapter 6 we introdu
e a novel unsupervised model,the latent words language model. This model learns word similarities from alarge 
orpus of unlabeled texts whi
h are used to redu
e the sparseness problemsrelated to traditional n-gram models, resulting in a better model of previouslyunseen texts. In 
hapter 7 we will show that these similarities 
an also besu

essfully employed in a supervised model for information extra
tion, resulting inimproved performan
e of the models for word sense disambiguation and semanti
role labeling.The work in this part of the thesis is des
ribed in the following arti
les:- Koen Des
ha
ht and Marie-Fran
ine Moens. Using the Latent WordsLanguage Model for Semi-Supervised Semanti
 Role Labeling. In pro
eedingsof the 2009 Conferen
e on Empiri
al Methods in Natural LanguagePro
essing (EMNLP 2009), Singapore, August 7, 2010- Koen Des
ha
ht and Marie-Fran
ine Moens. The latent words languagemodel. submitted to Computational Linguisti
s.- Koen Des
ha
ht and Marie-Fran
ine Moens. Weakly supervised learning forsemanti
 role labeling. submitted to the Journal of Arti�
ial Intelligen
eResear
h.



47- Koen Des
ha
ht and Marie-Fran
ine Moens. The Latent Words LanguageModel. In Pro
eedings of the 18th Annual Belgian-Dut
h Conferen
e onMa
hine Learning (Benelearn 09), Tilburg, 2009.Furthermore the work des
ribed in 
hapter 6 has resulted in the following patentappli
ation:- Koen Des
ha
ht & Marie-Fran
ine Moens. Method for the automati
determination of 
ontext dependent hidden word distributions. Submittedto U.S. Patent and Trademark O�
e on November 18, 2009.





Chapter 5Semi-supervised learningwith Bayesian models
�Data! Data! Data� he 
ried impatiently. �I 
an't make bri
ks without 
lay.�Sherlo
k Holmes in Doyle (1891)In this 
hapter we introdu
e a �rst weakly supervised method: semi-supervisedlearning, whi
h uses both labeled and unlabeled data to train an informationextra
tion method. We introdu
e semi-supervised learning methods (se
tion5.1) and des
ribe how generative Bayesian networks 
an easily be extended toin
orporate semi-supervised learning (se
tion 5.2). We then apply a number ofvariants of this semi-supervised learning method to semanti
 role labeling in se
tion5.3, and evaluate these methods in se
tion 5.4. We 
ompare our methods to relatedresear
h in se
tion 5.5 and summarize our �ndings in se
tion 5.6.5.1 Introdu
tion to semi-supervised learningFor most information extra
tion tasks a large set of examples is needed to learn ana

urate mapping from input si to output Li, requiring a signi�
ant investment interms of time and manual labour. For information extra
tion from texts this oftenboils down to manually annotating 10000's of senten
es with their 
orre
t labeling.Resear
hers have suggested to alleviate this so-
alled annotation bottlene
k withsemi-supervised learning methods that use a set of labeled examples together with49



50 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELSa large set of unlabeled examples. A system that 
ould learn an a

urate 
lassi�erwith only a small set of labeled examples and a large set of unlabeled examples(whi
h 
an typi
ally be 
olle
ted at a small 
ost) would substantial redu
e the 
ostof developing IE systems.A se
ond motivating fa
tor for weakly supervised texts is the inherent sparsenessof natural language texts. This is for example expressed in Zipf's law (Zipf, 1949;Estoup, 1916), whi
h states that the number of times a word is en
ountered inany given 
orpus is inversely proportional to its frequen
y rank. As a result, mostwords in a 
orpus are en
ountered only a small number of times, and any statisti
almodel needs a way to handle previously unseen words when applied to a new text.Another manifestation of this sparseness is the fa
t that a senten
e of reasonablelength has typi
ally never been previously en
ountered in a given 
orpus (Katzand Fodor, 1963). A pra
ti
al result of the sparseness of natural language is thatit limits the a

ura
y of ma
hine learning methods on texts, whi
h is for exampleexpressed in the low a

ura
y of part-of-spee
h tagging of previously unseen words(Brants, 2000). Weakly supervised te
hniques that 
an analyze today's massive
orpora stored on 
omputers with modern day 
omputing power, o�er a methodto drasti
ally s
ale up the number of training examples en
ountered by a givenma
hine learning method, improving its a

ura
y.We 
onsider semi-supervised learning methods a subset of the more general weaklysupervised learning methods. We de�ne semi-supervised learning asDe�nition 5.6 Semi-supervsed learning methodsSemi-supervised ma
hine learning methods are methods that optimize a singleobje
tive fun
tion whi
h in
orporates both labeled and unlabeled data.The most important di�eren
e to weakly supervised learning is that a semi-supervised method aims at optimizing a single obje
tive fun
tion (e.g. this
hapter), while a weakly supervised method 
an use di�erernt obje
tive fun
tionsto train the parameters from labeled and unlabeled data (e.g. 
hapter 7).5.1.1 Assumptions of semi-supervised methodsIn this se
tion we explain the assumptions behind most semi-supervised te
hniques.At the 
ore of most methods are two observations: the �rst observation is thatthe spa
e of input examples 
ontains higher density regions (regions 
ontainingexamples that are likely to be observed) and lower density regions (regions
ontaining examples that are not likely to be observed). The se
ond observationis that low density regions often 
orrelate with 
lassi�
ation boundaries. The
entral idea in semi-supervised learning is to 
ombine these observations: use theunlabeled data to improve the density estimate of the input data and use this
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) labeled and unlabeledFigure 5.1: S
hemati
 �gure illustrating how unlabeled data might improve asupervised 
lassi�er. Grey dots are unlabeled data, white dots labeled data andthe dotted line the 
lassi�
ation boundary.improved density estimate together with the labeled data to learn an improved
lassi�
ation boundary. Figure 5.1 provides a s
hemati
 illustration of this idea:a supervised 
lassi�er with limited labeled data (�g. 5.1a) is 
ombined withunlabeled data (�g. 5.1b) to learn improved 
lassi�
ation boundaries (�g. 5.1
).In a di�erent wording (Chapelle et al., 2006) this assumption 
an be stated asAssumption 5.1 Semi-supervised smoothness assumptionIf two data points si and sj are 
lose in a high-density region, then so should bethe 
orresponding outputs Li and Lj.In our work the data points si and sj are words or senten
es and the outputs
Li and Lj are labels or labellings that annotate these words or senten
es. Thisassumption has been formulated di�erently, e.g. as the 
luster assumption thatstates that if two points are in the same 
luster they are likely to be of the same
lass (Seeger, 2002), as the low density separation assumption that states that thede
ision boundary lies in low density regions of the input spa
e (Chapelle and Zien,2005), or as the manifold assumption that states that the high-dimensional data lieroughly on a low-dimensional manifold (Belkin et al., 2004). Chapelle et al. (2006)argue that these di�erent formulations 
an all essentially be interpreted as spe
ial
ases of the more general smoothness assumption. We will re�ne this assumptionfor the spe
i�
 models used in this work, i.e. semi-supervised (this 
hapter) andunsupervised (
hapter 6) Bayesian models.5.1.2 Semi-supervised methodsWork on semi-supervised methods in ma
hine learning has been diverse andabundant. Two popular semi-supervised learning methods are self-training and
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o-training. These methods 
an be 
lassi�ed as �meta�-methods, in the sense thatthey 
an be employed with any ma
hine learning method. Other methods extend aparti
ular ma
hine learning method, su
h as transdu
tive support ve
tor ma
hines(Joa
hims, 1999), the null-
ategory noise model for Gaussian pro
esses (Lawren
eand Jordan, 2005), expe
tation regularization for exponential models (Mann andM
Callum, 2007) or generative models with hidden variables (Nigam et al., 2006).We refer to Chapelle et al. (2006) and Zhu (2005) for elaborate literature reviews.5.2 Semi-supervised learning withgenerative models5.2.1 Introdu
tionIn 
hapter 2 we dis
ussed how the maximum likelihood method is used to 
omputethe parameters of a Bayesian network given a set of labeled training examples.This method 
an easily be extended to a semi-supervised approa
h that learns theparameters of the model from a set of labeled and a set of unlabeled examples.Popularized notably by the EM-algorithm (Dempster et al., 1977), this approa
hhas re
eived a lot of attention and its theoreti
al properties are well understood(Castelli and Cover, 1996; Cozman and Cohen, 2006). We �rst introdu
e thismethod in detail and then apply it to two information extra
tion tasks.Given a Bayesian network, a training set DA = [(s1, L1)..., (sa, La)] of a labeledexamples and a set DU = [(sa+1, La+1)..., (sa+u, La+u)] of u unlabeled examples.We 
all the labels of the labeled data DA observed labels, and the (unknown)labels of the unlabeled data DU hidden labels, and assume that the probability ofa label Li being observed or hidden is independent of the sample si or of the valueof the label, i.e. we assume that a random sele
tion of examples were manuallyannotated.We now learn the parameters θsemi from these two 
olle
tions of data by optimizingthe 
ombined likelihood of the labeled and unlabeled examples:
Lsemi(θsemi) =

a
∑

i=1

log P (si,Li|θsemi) +
a+u
∑

i=a+1

log P (si|θsemi) (5.1)where the probability of the unlabeled senten
es is 
omputed as
P (si|θsemi) =

∑

Li

P (si|Li, θsemi) · P (Li|θsemi)
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hoose the parameters θsemi so that the model �explains� thelabeled examples, by being likely to generate the labellings and the senten
es, and�explains� the unlabeled examples by being likely to generate the senten
es.This approa
h builds on the semi-supervised smoothness assumption sin
e itassumes that every dense region in the input spa
e 
an be modeled with a singlemixture 
omponent. The de
ision boundaries then lie naturally between thesemixture 
omponents. A formal treatment of this approa
h is given by Castelliand Cover (1995), who show that if the Bayesian network is equivalent to thenetwork used to generate the data, and if the mixture 
omponents are identi�able(Redner andWalker, 1984), the parameters θsemi 
an be su

essfully learned from a
olle
tion of labeled and unlabeled examples. Under these assumptions, in
reasingthe size of the unlabeled set in
reases the a

ura
y of the parameters, and only asmall number of labeled examples is needed to label the mixture 
omponents.Cozman and Cohen (2006) however show that adding unlabeled data 
an alsode
rease the performan
e of the learned model. This 
an o

ur if the model used for
lassi�
ation is signi�
antly di�erent from the model that was used to generate thedata. They show that violating this 
orre
t model assumption will in general haveonly small in�uen
e on a fully supervised model, but 
an potentially dramati
allyredu
e the performan
e of a semi-supervised model. Furthermore in this 
asethe maximum likelihood estimate will result in di�erent parameters for the fullysupervised model than for the unsupervised model. The parameters of the semi-supervised model will then be asymptoti
ally a linear interpolation of these twosets of parameters, and will be 
loser to the parameters of the supervised or tothe parameters of the unsupervised model depending on the ratio of labeled andunlabeled examples.Semi-supervised learning with generative models on real-world appli
ations hasprodu
ed mixed results. Positive results have been reported on part-of-spee
htagging (Cutting et al., 1992), named entity re
ognition (Collins and Singer, 1999),fa
e orientation dis
rimination (Baluja, 1999), and word alignment (Callison-Bur
het al., 2004). Negative results were reported on image analysis (Shahshahaniand Landgrebe, 1994) and fa
ial expression 
lassi�
ation (Grandvalet and Bengio,2004). Bru
e (2001), and Nigam et al. (2000) report mixed results on respe
tivelyword sense disambiguation and text 
lassi�
ation.5.2.2 Iterative parameter estimationTo sele
t the variables θsemi given the labeled and unlabeled examples (equation5.1) we 
an use two approa
hes. A �rst approa
h is to sele
t the set of parametersfor whi
h the likelihood is the highest. This is usually performed with a hill-
limbing algorithm that 
hanges the parameters in every iteration su
h that thelikelihood is guaranteed to in
rease, until a (lo
al) maximum is rea
hed. A popular
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h is the EM-algorithm (Dempster et al., 1977). A se
ondmethod is a Bayesian approa
h, where a prior distribution is de�ned for everyparameter. From these prior distributions, and the observed examples, the jointposterior distribution for all parameters is 
omputed. The �nal value of everyparameter is then set to the expe
ted value of this parameter a

ording to theposterior distribution, e.g. to the weighted sum of all possible values for thisparameter, where the weights are given by the posterior distribution. A popularexample of this approa
h is Markov Chain Monte Carlo sampling (Metropolis andUlam, 1949). In this 
hapter we use the latter approa
h, the former approa
h willbe employed in 
hapter 6.Given a set of parameters, a prior distribution for every parameter and a setof examples, we use Markov Chain Monte Carlo (MCMC) sampling to generatesamples of these parameters a

ording to the joint posterior distribution. Startingfrom a random initialization L
(1) of the parameters a Markov 
hain of samples

L
(1), ...,L(τ) is 
onstru
ted, where the sample L

(τ) is sele
ted a

ording to aproposal distribution q(L(τ)|L(τ−1)) depending on the previous sample L
(τ−1).The proposal distribution is 
hosen su
h that the 
hain of samples has the 
ombinedlikelihood Lsemi as the equilibrium distribution. During the �rst number ofiterations (the burn-in period) the samples move from the random start positionto the region in the parameter spa
e with high likelihood. After this period, thesamples move around the parameter spa
e a

ording to the posterior distribution.Every number of iterations a sample is stored, and at the end of the MCMCmethod, every parameter is averaged over all 
olle
ted samples.5.3 Semi-supervised semanti
 role labelingIn this se
tion we apply two di�erent MCMC methods to semi-supervised learningfor semanti
 role labeling. We �rst extend the generative model to semi-supervisedlearning with Gibbs sampling in se
tion 5.3.1, and propose a new generative modelbetter tailored to semi-supervised learning in se
tion 5.3.2. We also extend thedis
riminative model with Metropolis-Hastings sampling (se
tion 5.3.3).5.3.1 Gibbs samplingWe extend the generative model for SRL de�ned in �gure 4.2 to the 
ase of semi-supervised learning. For all labeled senten
es we set the predi
ate and semanti
role labels to their manually annotated values. The labels for unlabeled senten
esare initially set to a random value1 and then iteratively updated: in sequen
e we1A strategy where a 
lassi�er was trained on the labeled examples and used to estimate initialvalues for the unlabeled examples did not result in signi�
ant better results.



SEMI-SUPERVISED SEMANTIC ROLE LABELING 55visit all labels of the unlabeled senten
es, every time removing the 
urrent labelat that position, estimating the probability distribution of the label given thevalues of all other roles and predi
ates, and setting a new label randomly sele
teda

ording to this distribution on this position.The probability of a new role rji on position i for verb wj with predi
ate Predj isgiven by
P (rji|L

(τ−1)
−rji

,Ftrji) ∼
c′(rji−1, rji, P redj)

c′′(rji−1, P redj)
×

c′(rji, rji+1, P redj)

c′′(rji, P redj)
×

K
∏

k=1

c′(Ftrk
ji, rji)

c′′(rji)(5.2)where L
(τ−1)
−rji

is all labellings in iteration τ−1, ex
luding label rji, c′(rji, rji+1, P redj)is the number of times role rji o

urs together with role rji+1 and predi
ate Predjin L
(τ−1)

−r
j
ji

in
reased with a pseudo-
ount α, and c′′(rji, P redj) is the number oftimes role rji and predi
ate Predj o

ur in L
(τ−1)
−rji

in
reased with a pseudo-
ount|R|α where |R| is the number of distin
t values of the role label. c′′ is the totalnumber of labels in the dataset in
reased with |P |α, where |P | is the number ofdistin
t values for the predi
ate label. All other symbols are de�ned analogously2.The pseudo-
ounts α are the parameters of the prior distribution, a symmetri
alDiri
hlet distribution. α is 
hosen to optimize the likelihood of the labels given anunseen test set.For a new predi
ate label Predj the probability is given by
P (Predj |L

(τ−1)
−Predj

,Ftrji) ∼
c′(Predj)

c′′
×

N
∏

i = 1
i 6= j

c′(rji, rji+1, P redj)

c′′(rji, P redj)

×
K
∏

k=1

c′(Ftrk
jj , P redj)

c′′(Predj)A new value is randomly sele
ted for the role or predi
ate label and the respe
tivevariable is assigned the new value. This iteration is performed many times, andafter the burn-in period the values of the role labellings are stored at regularintervals and are used to 
ompute the �nal set of parameters θsemi.2Note that all 
ounts used here 
an be stored, only to be updated if the value of a roleor predi
ate 
hanges, allowing for an e�
ient implementation that re-estimates thousands ofvariables per se
ond.
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Figure 5.2: Graphi
al representation of the generative model with multiple mixture
omponents mi. k ranges over all senten
es in the 
orpus and i over the n wordsin the senten
e.5.3.2 Gibbs sampling with a multiple-mixture modelWe have seen in the previous se
tion how semi-supervised learning is based onthe �
orre
t-model� assumption. Although in pra
ti
e this assumption is almostalways violated, this sometimes does and sometimes doesn't de
rease performan
eof semi-supervised methods. If a de
rease in performan
e is observed in semi-supervised models, it 
an be bene�
ial to explore a di�erent model that mat
hesmore 
losely the statisti
s of the data (Cozman et al., 2003). One aspe
t of theproposed model for semanti
 role labeling that seems worrisome is the high numberof NULL labels. In the training set, more than 91% of the role labels are markedas NULL. This does not seem to be a good model of natural language, sin
e ittries to model almost all words with a single label. Nigam et al. (2006) have notedthat in the presen
e of a mismat
h between labels and true mixture 
omponents,it 
an be advantageous to de�ne a number of hidden mixture 
omponents, witha many-to-many mapping between mixture 
omponents and role labels. Withthis setup, we see a semanti
 role as a label for a 
luster of natural languagephenomena (e.g. prepositional phrases expressing a lo
ation). This very general
luster however likely 
onsists of a number of sets of senten
e 
onstituents thatare semanti
ally and synta
ti
 related, i.e. a number of sub-
lusters. The mixture
omponents 
an then be used to represented di�erent sub-
lusters, leading to abetter representation of the di�erent semanti
 roles. We expe
t that this will beespe
ially helpful to obtain a more a

urate model for the NULL label.
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ription of the modelThe multiple mixture Bayesian model is de�ned as in �gure 5.2. For a verb wnat position n in senten
e sm of N words we introdu
e a ve
tor of N mixture
omponents mi = [mi1, ..., miN ]. The mixture 
omponents are never observed inthe training data, and are learned iteratively from the labeled and unlabeled data.We set the number of unique mixture 
omponents to 40. Although we assume that,after training, a single mixture 
omponent will map to a single role, this 
onstraintis never enfor
ed during sampling. We will see in se
tion 5.4 how this in�uen
esour results. We estimate the mixture 
omponents from the joint likelihood of thelabels and observed features for the labeled examples and of the likelihood of theobserved features for the unlabeled examples
LsemiMM (θsemi) =

a
∑

k=1

log P (si,Li|θsemi) +

a+u
∑

i=a+1

log P (si|θsemi)where the joint probability of a senten
e and its labels is 
omputed as
P (sj,Lj |θsemi) =

∑

mji

[P (sj ,Lj |θsemi,mji) · P (mji|θsemi)]and the probability of an unlabeled senten
e is 
omputed as
P (sj |θsemi) =

∑

mji

[P (sj |θsemi,mji) · P (mji|θsemi)]Note that we do not estimate the role labels of the unlabeled examples, sin
ethese do not in�uen
e the likelihood of the observed features, given the mixture
omponents.5.3.2.2 TrainingWe use Gibbs sampling to estimate the parameters of this model: we �rst set allmixture 
omponents to a random value and then sequentially visit every mixture
omponent mji, remove the 
urrent value for that 
omponent, and 
ompute aprobability distribution for the value of this mixture 
omponent given the features,the labels and all other mixture 
omponents. The probability distribution of amixture 
omponent in an unlabeled senten
e is given by
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P (mji|M

(τ−1)
−mji

,Ftrji, rji) ∼
c′(mji−1, mji+1, mjj)

c′′(mji−1, mjj)
×

c′(mji, mji+1, mjj)

c′′(mji, mjj)

×
c′(mji, rji)

c′′(mji)
×

K
∏

k=1

c′(Ftrk
ji, mji)

c′′(mji)where M
(τ−1)
−mji

is the 
olle
tion of mixture 
omponents of all labellings in iteration
τ − 1, ex
luding 
omponent mji. Other symbols in this formula are analogousto symbols used in se
tion 5.3.1. The distribution of a new value of mixture
omponent mji of a semanti
 role for an unlabeled senten
e is
P (mji|M

(τ−1)
−mji

,Ftrji) ∼
c′(mji−1, mji+1, mjj)

c′′(mji−1, mjj)
×

c′(mji, mji+1, mjj)

c′′(mji, mjj)
×

K
∏

k=1

c′(Ftrk
ji, mji)

c′′(mji)We thus see that for an unlabeled senten
e, the mixture 
omponents are onlydependent on the other mixture 
omponents and the features, not on the(unknown) labeling.5.3.2.3 Inferen
eThe joint probability of a labeling Lj = (Predj , rj) and a senten
e w is given by
P (Lj ,w) =

∑

mji

P (w, Lj |mji, θsemi) · P (mji|θsemi)The mixture 
omponents are thus marginalized, i.e. summed out. During
lassi�
ation we �nd the predi
ate label and roles that maximizes this probability,using a beam sear
h.5.3.3 Metropolis-Hastings samplingWe have seen in 
hapter 4 how the dis
riminative model signi�
antly outperformsthe generative model, and we would also like to expand this model to semi-supervised learning. This is however not as straightforward as for the generativemodel, sin
e in prin
iple unlabeled examples do not in�uen
e the 
onditionallikelihood of the labels in a dis
riminative model (Chapelle et al., 2006). However,we 
an employ a more general MCMC sampling method, Metropolis-Hastingssampling (Hastings, 1970; Bishop, 2006). In Metropolis-Hastings sampling thesample L
(τ+1) is sele
ted 
onditioned on the previous sample L

(τ) a

ording to



EVALUATION OF SEMI-SUPERVISED SRL 59some proposal distribution q(L(τ+1)|L(τ)). The sample is then a

epted or reje
tedwith a probability given by
G(L(τ+1),L(τ)) = min

(

1,
L

′

semi(S,L(τ+1)) · q(L(τ)|L(τ+1))

L
′

semi(S,L(τ)) · q(L(τ+1)|L(τ))

)Here L
′

semi(S,L(τ)) is the likelihood Lsemi(S,L(τ)) of the senten
es S andlabellings L
(τ) multiplied with some value δ, whi
h 
an be any non-zero value,as long as it remains 
onstant during the sampling pro
ess. We 
hoose δ =

1
L(S) (i.e. the inverse of the likelihood of the senten
es) whi
h is a 
onstant(although unknown) value and see that L

′

semi(S,L(τ)) = Lsemi(L
(τ)|S). Thisis the 
onditional likelihood of the labellings given the senten
es, a valuethat 
an be 
omputed with the dis
riminative model. We set the proposaldistribution to q(L(τ+1)|L(τ)) = P (L(τ+1)|θ

(τ)
semi,S), where the parameters θ

(τ)
semiare learned from the previous labeling L

(τ) and the senten
es S using maximumentropy with generalized iterative s
aling. Similarly we de�ne q(L(τ)|L(τ+1)) =

P (L(τ)|θ
(τ+1)
semi ,S), where the parameters θ

(τ+1)
semi are learned from the labeling

L
(τ+1).Summarizing, the a

eptan
e fun
tion G(L(τ+1),L(τ)) 
ombines the traditionalexploit/explore trade-o�. The fa
tor Lsemi(L

(τ+1)|S)
Lsemi(L(τ)|S)

moves the sampling methodtowards labellings that maximize the 
onditional likelihood, exploiting known goodareas in the sample spa
e, while P (L(τ)|θ
(τ+1)
semi ,S)

P (L(τ+1)|θ
(τ)
semi,S)

en
ourages labellings that are�unlikely� given the 
urrent labeling, thereby exploring new areas in the samplespa
e. Also here, after the burn-in period a number of samples are stored whi
hare 
ombined in the �nal model.5.4 Evaluation of semi-supervised SRLWe evaluate the sampling methods using 20% of the examples of the CoNLL 2008training set as labeled examples, and di�erent sizes of the training set as unlabeledexamples, ranging from 0% (i.e. a fully supervised 
lassi�er) to 80%. A randomlabeling is 
reated for the unlabeled examples, whi
h is then iteratively updatedduring the Gibbs or Metroplis-Hastings sampling method. After an initializationperiod (i.e. the burn-in period) we 
olle
t samples every 20th iteration. The
olle
ted samples are used to train a �nal model, whi
h is then evaluated on theCoNLL 2008 test 
orpus. We report the F1-measure of the di�erent methods intable 5.1. For the Gibbs sampling method, we see that adding unlabeled examplesdegrades performan
e, from 54.42% for a 
lassi�er that is trained on 20% of alllabeled examples and no unlabeled examples, to 43.75% for a 
lassi�er that was



60 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELS20%L+0%U 20%L+20%U 20%L+40%U 20%L+60%U 20%L+80%UGibbs 54.42% 48.61% 47.43% 45.86% 43.75%Gibbs MM 53.55% 52.39% 49.11% 51.70% 50.91%M-H 67.23% 62.12% 59.40% 60.68% 59.19%Table 5.1: Performan
e (in F1-measure) of the generative model trained withGibbs sampling, the generative multiple-mixtures model trained with Gibbssampling and the dis
riminative model trained with Metropolis-Hastings sampling.The models use 20% labeled (L) and various fra
tions of unlabeled data (U) fromthe CoNLL training set.trained with 20% labeled and 80% unlabeled data. We must thus 
on
lude that forthe generative model, the violation of the 
orre
t-model assumption is too severe,and adding unlabeled data makes the parameters move away from the optimalparameters for 
lassi�
ation, resulting in a dramati
ally redu
ed performan
e.We have proposed the multiple mixtures model as a model that has more �exibilityto model natural language. We see that for 20% labeled data and no unlabeleddata, the multiple mixtures model performs slightly worse than the standardgenerative model. The reason for this is that also for the labeled 
orpus we needto estimate the mixture 
omponents, whi
h might results in ambiguity betweensome mixture 
omponents and labels. We see however that the performan
e of themultiple-mixture 
omponents model is more stable when adding more unlabeledexamples, redu
ing only by less than 3% when using 4 times the number ofunlabeled examples 
ompared to the number of labeled examples. These resultsindi
ate that the additional degrees of freedom provided by the multiple mixture
omponents allow the model to model natural language more 
losely, making itbetter suited for semi-supervised learning. This 
an also be understood from thesemi-supervised smoothness assumption whi
h suggests that if the dense regions
an be modeled more a

urately, labels 
an be propagated more reliably tounlabeled examples.Table 5.2 gives the mapping from role mixtures to role labels that wasautomati
ally learned during Gibbs sampling (using 20% labeled and no unlabeledexamples). We see that some role mixtures have a 
lear mapping to a single rolelabel, su
h as mixture 0 to NULL role, mixture 1 to role A1 and mixture 3 to
A0. Other mixtures, su
h as mixture 5 and mixture 14 are more ambiguous, andmap to multiple role labels, whi
h is a likely 
ause of errors. We also see thatmany roles map to the NULL role, 
on�rming our hypothesis that this label infa
t models di�erent types of senten
e 
onstru
ts, whi
h are better modeled witha larger number of mixtures.Finally we evaluate the Metropolis-Hastings sampling algorithm. We start fromthe dis
riminative model, whi
h signi�
antly outperforms the generative model



RELATED WORK 61A0 A1 A2 AM-ADV AM-DIS AM-LOC AM-MNR AM-MOD AM-TMP NULL total0 0.62 1.38 0.03 0.00 0.00 0.03 0.06 0.03 0.10 96.80 431461 1.25 86.20 0.15 0.19 0.01 0.07 0.03 0.08 0.49 10.93 195442 0.38 0.58 0.08 0.05 0.00 0.00 0.03 0.04 0.04 97.96 624933 92.74 1.16 0.89 0.95 0.12 0.00 0.41 0.08 0.12 3.26 65484 0.12 93.77 0.31 0.07 0.02 0.07 0.13 0.07 0.02 4.81 276655 0.19 45.54 0.20 0.06 0.05 0.04 0.01 0.07 0.02 53.74 562956 0.05 0.09 0.35 0.06 0.04 0.00 0.00 0.00 0.26 98.86 341477 0.12 0.05 0.01 0.01 0.01 0.01 0.00 0.01 0.06 99.35 834088 0.77 0.09 97.28 0.15 0.17 0.27 0.10 0.01 0.24 0.72 142639 0.96 0.70 0.09 0.00 0.09 0.06 0.01 0.22 0.19 97.41 2111210 0.79 1.37 0.12 0.20 0.21 0.16 0.03 0.63 86.80 9.36 1108211 96.09 1.03 0.18 0.00 0.02 0.05 0.00 0.01 0.02 2.19 4929512 0.04 5.51 0.88 0.73 0.31 0.25 0.14 0.62 0.44 90.40 945513 0.18 4.52 1.03 12.91 0.08 0.01 16.13 41.89 0.22 22.21 1160914 24.69 64.73 0.55 0.17 0.17 0.08 0.03 0.12 0.19 8.72 1302915 0.13 0.03 0.07 0.00 0.02 0.02 0.04 0.02 0.08 98.90 8250416 2.45 3.43 2.87 0.15 0.00 0.40 0.35 0.59 0.44 88.82 500917 10.62 0.78 4.71 0.15 0.02 16.88 1.23 2.66 0.27 61.24 366118 1.16 0.56 0.06 0.20 0.14 0.05 0.09 0.22 0.37 96.24 1465519 3.06 0.79 69.58 0.55 0.18 0.09 0.28 0.05 0.41 24.03 5803Table 5.2: For the 20 most frequent role mixtures (�rst 
olumn) and the 10 mostfrequent role labels (�rst row) in the labeled training set, this table lists the numberof assignments of role mixtures to role labels after the Gibbs sampling (using 20% ofthe labeled training data and no unlabeled data), numbers are given in per
entagesof total o

urren
es of the role mixture (last 
olumn). For the de�nition of thevarious roles, see table 4.1 on page 37.when using only labeled data. As we add more unlabeled data, we see that alsohere, the performan
e of the method de
reases, although the de
rease (2.93%) issmaller then for the generative model.5.5 Related workCon
erning resear
h on semi-supervised methods for natural language pro
essingwe mention the appli
ation of self-learning on word sense disambiguation(Yarowsky, 1995) and on synta
ti
 senten
e parsing (M
Closky et al., 2006), theuse of 
o-training for synta
ti
 parsing (Sarkar, 2001) and part-of-spee
h tagging(Clark et al., 2003), semi-supervised dis
riminative methods for dete
ting and



62 SEMI-SUPERVISED LEARNING WITH BAYESIAN MODELSlabeling gene and protein names (Jiao et al., 2006) and for named entity re
ognitionand part-of-spee
h tagging (Mann and M
Callum, 2007) and transdu
tive supportve
tor ma
hines for mapping senten
es onto a formal meaning representation (Kateand Mooney, 2007) and performing dependen
y parsing (Wang et al., 2008). Werefer the interested reader to (Abney, 2007) for more referen
es on semi-supervisedlearning for natural language pro
essing. Although most of this resear
h showsthat semi-supervised learning for natural language pro
essing improves results,some resear
hers have also pointed to 
ases where adding unlabeled examplesdeteriorated performan
e. Nigam et al. (2000) �nd that a probabilisti
 model thatdoes not 
apture dependen
ies between features or that does not approximatethe 
orre
t number of 
lusters in the data 
an result in performan
e degradationfor semi-supervised methods. Charniak (1997) and Pier
e and Cardie (2001) �ndthat respe
tively self-training for senten
e parsing and 
o-training for noun phrasebra
keting 
an lead to in
reased errors in the 
lassi�
ation, most likely 
aused byin
orporating in
orre
tly labeled examples in the training phase.In re
ent years semi-supervised learning methods have been applied to semanti
role labeling. He and Gildea (2006) use a self-learning s
heme where a maximumentropy 
lassi�er is trained using a small set of labeled examples. This 
lassi�er isthen used to 
reate semanti
 role labellings for a large set of unlabeled senten
es,of whi
h the most 
on�dent are added to the labeled training set. This pro
ess isrepeated for a number of iterations. Contrary to expe
tations this did not improvethe performan
e of the 
lassi�er. Also a 
o-training s
heme where two 
lassi�erswere trained independently and used iteratively to label unlabeled senten
es failedto improve performan
e.Swier and Stevenson (2004) report on a su

essful self-learning method to learnVerbNet semanti
 roles (Kipper et al., 2000) where the probabilisti
 
lassi�er isaugmented with a set of linguisti
 restri
tions to guide the assignment of semanti
roles to senten
e 
onstituents, improving the performan
e of a baseline methodfrom a 63.7% a

ura
y to a 87.2% a

ura
y on a labeled se
tion of the BritishNational Corpus for 54 target verbs. The method was only tested on a small subsetof all verbs in VerbNet and to the best of our knowledge has not been reprodu
ed onthe mu
h larger PropBank dataset. Furthermore we 
an see linguisti
 
onstraintsas an alternative to labeled examples, adding extra human knowledge to the
lassi�er.Finally we 
ite Fürstenau and Lapata (2009) who 
ompute a synta
ti
 andsemanti
 distan
e between senten
e 
onstituents to automati
ally expand a smalltraining set with the most similar senten
es in a large set of unlabeled examples.The similarity metri
 
ombines a synta
ti
 distan
e (using the dependen
y tree ofthe senten
e) and a semanti
 distan
e metri
 (using the Brown 
lustering algorithm(Brown et al., 1992)). A supervised 
lassi�er is then trained on this expanded set.This method was su

essfully tested on the FrameNet 
orpus, where the largestrelative improvements were a
hieved for small initial sets of labeled examples. We
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uss this method more at length in 
hapter 7, where we will 
ompare itwith a method that 
ombines stru
tures learned by an unsupervised model.5.6 Con
lusions of this 
hapterIn this 
hapter we have introdu
ed semi-supervised learning as a solution to theunderspe
i�
ation problem and dis
ussed how semi-supervised learning is based onthe semi-supervised smoothness assumption. We have then extended the Bayesiannetworks with hidden variables for the unlabeled examples and shown how theparameters 
an be estimated with Markov Chain Monte Carlo sampling, whi
h weapplied on the generative and dis
riminative SRL models. The parameters of thegenerative SRL model were estimated with Gibbs sampling and the parametersof the dis
riminative model with Metropolis-Hastings sampling. We observed howthe performan
e of these semi-supervised 
lassi�ers deteriorated when using moreunlabeled data, whi
h is 
aused by a violation of the 
orre
t model assumption. Amultiple-mixtures model was then proposed as an improvement to the generativemodel, allowing more degrees of freedom when modeling natural language. We sawhow the performan
e of this model was more robust when adding more unlabeleddata.From these experiments we regrettably have to 
on
lude that Bayesian networkswith hidden variables are not a suitable paradigm for semi-supervised learning ofinformation extra
tion methods. This is in line with results indi
ating that semi-supervised learning, although potentially usefull for simple information extra
tiontasks (e.g. part-of-spee
h tagging (Cutting et al., 1992) and named entityre
ognition (Collins and Singer, 1999)), does not help for more 
omplex tasks (e.g.noun phrase 
hunking (Pier
e and Cardie, 2001) and synta
ti
 senten
e parsing(Charniak, 1997)). In the next 
hapter we turn to a di�erent approa
h to weaklysupervised learning: we �rst train an unsupervised model on unlabeled data, anduse, in a se
ond step, the statisti
s learned by this model in supervised 
lassi�ertrained on annotated data. We will see how this approa
h depends only slightlyon the 
orre
t model assumption, and does lead to improved results when usedwith large amounts of unlabeled data.





Chapter 6The Latent Words LanguageModel �When ideas fail, words 
ome in very handy�Johann Wolfgang von GoetheIn this se
tion we dis
uss a novel unsupervised model of natural language, thelatent words language model. This model learns synta
ti
ally and semanti
allysimilar words from a large 
orpus of unlabeled texts to improve the predi
tivequality of an n-gram language model on unseen texts. We will start by des
ribingstate-of-the-art n-gram language models and the problems en
ountered with thesemodels (se
tion 6.1) and introdu
e the LWLM as a possible solution to theseproblems (se
tion 6.2). We evaluate the predi
tive quality of this model on unseentexts in se
tion 6.3 and the learned word similarities in se
tion 6.4. We dis
ussrelated work in se
tion 6.5 and 
on
lude this 
hapter in se
tion 6.6.Although this 
hapter might seem to be deviating from the topi
 of this thesis, weask the reader for some patien
e, sin
e we will show at the end of this 
hapter andin the next 
hapter that the stru
tures learned in this language model are veryuseful to improve the performan
e of information extra
tion methods.
65



66 THE LATENT WORDS LANGUAGE MODEL6.1 N-gram language modelsLanguage models are models that assign a probability to every sequen
e of words
w = [w1...wN ], whi
h re�e
ts the probability that this sequen
e will be generatedby a human user of natural language. Senten
es that are likely to be utteredshould thus be assigned a higher probability and senten
es that are unlikely tobe uttered a lower probability. These models have been used in a wide range ofappli
ations, su
h as spee
h re
ognition (Jelinek et al., 1975), ma
hine translation(Brown et al., 1990), spelling 
orre
tion (Kemighan et al., 1990) and handwritingre
ognition (Srihari and Baltus, 1992). In this se
tion we introdu
e the mostsu

essful 
lass of language models, n-gram language models.6.1.1 Introdu
tionAlthough any probabilisti
 method 
an be used for language modeling, the mostsu

essful language models are n-gram models. These models estimate theprobability p(w) of the sequen
e of words w = [w1...wN ] as

p(w) =
N
∏

i=1

P (wi|w
i−1
i−n+1)where w

i−1
i−n+1 = [wi−n+1...wi−1] is the sequen
e of n − 1 words that o

ur before

wi, i.e. the probability of wi is 
omputed using only the n−1 previous words. Thevalue of n is usually set to a small number (e.g. 3). These models are trained ona large unlabeled 
orpus wtrain = [w1...wNt
]. Let us �rst 
onsider the maximumlikelihood estimate of the probability P (wi|w

i−1
i−n+1), given by

PML(wi|w
i−1
i−n+1) =

c(wi
i−n+1)

c(wi−1
i−n+1)where c(wi

i−n+1) is the number of times the sequen
e of words w
i
i−n+1 o

urs in

wtrain and c(wi−1
i−n+1) is the number of times the sequen
e w

i−1
i−n+1 o

urs in wtrain.This is a proper probability distribution sin
e∑wi

c(wi
i−n+1) = c(wi−1

i−n+1), but itwill lead to an ill-de�ned model, sin
e it assigns zero probability to many sequen
es.The reason for this is that potentially |V |n n-grams 
an o

ur in a given 
orpus,where |V | is the size of the vo
abulary (usually between 104 and 106 words). Anunobserved test 
orpus is thus likely to 
ontain many sequen
es that have neverbeen observed. Figure 6.1 shows that the probability of an n-gram in a test
orpus being observed in the training 
orpus be
omes exponentially smaller within
reasing n.Methods to over
ome this problem generally 
ombine the probability of wi
i−n withlower order probabilities, i.e. the probability of observing w

i
i−n+1, the probability
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Figure 6.1: Probability p that an n-gram of length n in the test se
tion has beenobserved in the training se
tion, both from the Reuters 
orpus (se
tion 6.3).of observing w

i
i−n+2, ... and the probability of observing wi. For an extensiveoverview of these methods we refer to Chen and Goodman (1996) and Goodman(2001). In the following se
tions we review some methods relevant to the resear
hat hand: a simple interpolation model (se
tion 6.1.2), the state-of-the-art Kneser-Ney smoothing method (se
tion 6.1.3) and the novel relative dis
ount Kneser-Neysmoothing method (se
tion 6.1.4).6.1.2 InterpolationA �rst method that is dis
ussed is a simple interpolation model. The probabilityof the word wi given the previous words w

i−1
i−n+1 is 
omputed by the interpolationmodel as

PINT (wi|w
i−1
i−n+1) = λn

c(wi
i−n+1)

c(wi−1
i−n+1)

+ (1 − λn)PINT (wi|w
i−1
i−n+2) (6.1)where λn is a smoothing fa
tor 0 ≤ λn ≤ 1. This is a re
ursive de�nition, inwhi
h the last term is the unigram probability PINT (wi) = c(wi)

Nt
, i.e. the relativefrequen
y of the word wi in the training 
orpus. This method 
ombines spe
i�
,but sparse and thus possibly unreliable, higher order n-grams with less spe
i�
,but more reliable, lower order n-grams. The interpolation fa
tors λn are 
onstantssele
ted to optimize the predi
tive quality of this model (as measured by thelikelihood of a held-out 
orpus, see se
tion 6.3).6.1.3 Kneser-Ney smoothingOne problem with simple interpolation is that not all frequen
y 
ounts should be
onsidered equally reliable. Consider the sequen
e of words �Garry Tu
ker said� inthe 5M words Reuters 
orpus (se
tion 6.3). This phrase is only observed this one
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(a) predi
ted 
ounts (b) absolute di�eren
e (
) relative di�eren
eFigure 6.2: Comparison of the real frequen
y in a 50M Reuters 
orpus versus theexpe
ted frequen
y based on a 5M 
orpus.time in the entire 
orpus. The maximum likelihood estimate (i.e. 1

105 ) is howevermost likely a serious overestimation, sin
e most likely we will not observe thisphrase 10 times in a 
orpus of 50M words. Figure 6.2a shows the relation betweenthe expe
ted 
ount (based on a 5M 
orpus) and the observed 
ount (based on adisjun
t 50M 
orpus in the same domain). We see that on average, the expe
ted
ount is larger than the observed 
ount. This di�eren
e 
an be quanti�ed inabsolute terms (i.e. the value obtained by subtra
ting the average predi
ted 
ountsfrom the average measured 
ounts, �gure 6.2b) and in relative terms (i.e. thevalue obtained by dividing the average predi
ted 
ounts by the average measured
ounts, �gure 6.2
). We see how both di�eren
es 
hanges with the frequen
y: lowfrequen
ies have a small absolute di�eren
e but a large relative di�eren
e, whilelarger frequen
ies have a bigger absolute di�eren
e but smaller relative di�eren
e.These observations suggest that a more a

urate distribution 
an be obtained bydis
ounting c(wi
i−n+1) with some fa
tor. This is in
orporated in the absolutedis
ounted Kneser-Ney smoothing method, proposed by Ney et al. (1994) andadapted by Chen and Goodman (1996)

Pakn(wi|w
i−1
i−n+1) =

c(wi
i−n+1) − dn(c(wi

i−n+1))

c(wi−1
i−n+1)

+ δ(wi−1
i−n+1)Pakn(wi|w

i−1
i−n+2)(6.2)where dn(c(wi−1

i−n+1)) is the dis
ount fa
tor for 
ount c(wi−1
i−n+1) and δ(wi−1

i−n+1) isan interpolation fa
tor that 
ombines the n-gram distribution with the lower order
n − 1-gram distribution and is de�ned by

δ(wi−1
i−n+1) = 1 −

∑

wi

c(wi
i−n+1) − dn(c(wi

i−n+1))

c(wi−1
i−n+1)

(6.3)
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ommon 
hoi
e (Chen and Goodman, 1996) for the dis
ount fa
tor is
dn(c(wi

i−n)) =



















0 if c(wi
i−n) = 0

dn1 if c(wi
i−n) = 1

dn2 if c(wi
i−n) = 2

dn3+ otherwisewhere dn1, dn2 and dn3+ are 
onstants optimized on a held-out 
orpus. Uniqueto Kneser-Ney smoothing is that the probabilities of bigrams and unigrams are
omputed in a di�erent manner. The probability distribution of bigrams is givenby
Pakn(wi|wi−1) =

π(wi−1wi) − d2(π(wi−1wi))
∑

wj
π(wi−1wj)

+ δ(wi−1)Pakn(wi) (6.4)where π(wi−1wi) = |{v|c(vwi−1wi) > 0}| is the number of di�erent words v su
hthat the sequen
e vwi−1wi o

urs at least on
e in the training set. Similarly theunigram probability is 
omputed as
P (wi) =

π(wi)
∑

wj
π(wj)

(6.5)where π(wi) = |{v|c(vwi) > 0}| is the number of di�erent words v su
h that thesequen
e vwi at least on
e. These spe
ial 
omputations of the bigram and unigramdistributions are motivated by the observation that some words (e.g. �Fran
is
o�)o

ur frequently in a 
orpus, but o

ur only in very spe
i�
 
ontexts (e.g. �SanFran
is
o�), and that 
ounting the number of unique 
ontexts su
h a word o

ursin gives a better estimate of the true probability of observing this word in a new
ontext.This smoothing method 
ombines a number of ideas: (1) the maximum likelihoodestimate is 
loser to the true distribution if the raw 
ounts are dis
ounted with anabsolute fa
tor, (2) lower order 
ounts are better estimated with formula's 6.4 and6.5 to mat
h the marginals of the higher-order distributions to the marginals of thetraining data, and (3) depending on the stru
ture of the higher order distribution,more or less weight should be given to this distribution. The motivation for (1) wasgiven previously and for the motivation for (2) we refer to (Chen and Goodman,1996). Property (3) however is an interesting quality that we will dis
uss a bitmore in depth.The interpolation fa
tor δ(wi−1
i−n+1), given by equation 6.3, is not a stati
 fa
tor,but a dynami
 fa
tor that depends on the shape of the higher order distribution.



70 THE LATENT WORDS LANGUAGE MODELAssume for example the following de�nition for the dis
ount fa
tor
dn(c(wi

i−n+1)) =



















0 if c(wi
i−n+1) = 0

0.9 if c(wi
i−n+1) = 1

1.5 if c(wi
i−n+1) = 2

2.1 otherwiseTake that we observe the 3-gram �Garry Tu
ker said�, and want to 
ompute theprobability distribution of the next word. �Garry Tu
ker said� o

urs only on
e inthe training 
orpus and the interpolation fa
tor θ("Garry Tu
ker said") is thus
1 − 1−0.9

1 = 0.9. A high weight is thus given to the lower order probabilitydistributions, sin
e the higher order distribution was sparse and probably notvery reliable.Now take that we observe the 3-gram �the �rst quarter�, whi
h o

urs 5493 timesin the 
orpus, and o

urs frequently with the same 4-grams e.g. �the �rst quarterof� (2643 times), �the �rst quarter , � (708 times) and �the �rst quarter and� (187times). For this training 
orpus, we �nd that δ("the �rst quarter") = 0.05, givinga high weight tot the higher order distribution sin
e it was observed frequentlyand is probably reliable.Kneser-Ney smoothing is not the only smoothing method to in
orporate thisdynami
 interpolation (e.g. Jelinek and Mer
er (1980) and Bell et al. (1990)),but in our opinion it is the only method to 
ombine this in an e�e
tive waywith the dis
ount of individual sequen
es. In an extensive 
omparison of alarge number of smoothing te
hniques, Chen and Goodman (1996) found thatinterpolated Kneser-Ney smoothing 
onsistently outperforms all other state-of-the-art smoothing methods.6.1.4 Relative dis
ounted Kneser-Ney smoothingOne disadvantage of interpolated Kneser-Ney smoothing is that it is only de�nedfor dis
rete 
ounts. In the following se
tions we will use it in the EM-algorithm,where we need to dis
ount non-dis
rete, probabilisti
 
ounts. It is also un
learhow to 
ount the number of unique 
ontexts of a parti
ular word in this setting.For these reasons we propose a novel modi�
ation of the Kneser-Ney smoothingmethod, termed relative dis
ounted Kneser-Ney smoothing (RDKN). RDKN usesa relative dis
ount fa
tor dn(c(wi
i−n+1)) between 0 and 1. The smoothing method

Prkn(wi|w
i−1
i−n+1) is then de�ned by
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Prkn(wi|w

i−1
i−n+1) =

c(wi
i−n+1) × dn(c(wi

i−n+1))

c(wi−1
i−n+1)

+ δ(wi−1
i−n+1)Prkn(wi|w

i−1
i−n+2)(6.6)where the re
ursion ends with the unigram probability Prkn(wi) = c(wi)

N
. As beforethe interpolation fa
tor δ(wi−1

i−n+1) is de�ned as
δ(wi−1

i−n+1) = 1 −
∑

wi

c(wi
i−n+1) × dn(c(wi

i−n+1))

c(wi−1
i−n+1)

(6.7)We de�ne dn(c(wi
i−n+1)) by dividing the spa
e of 
ounts c(wi

i−n+1) into S equallypopulated intervals with borders c1, ... , cS−1. Every interval is assigned a �xeddis
ount fa
tor ds, de�ning the fun
tion dn(c(wi
i−n+1)) as

dn(c(wi
i−n+1)) =



















dn1 if c(wi
i−n+1) ≤ c1

dn2 if c1 < c(wi
i−n+1) ≤ c2

... ...

dnS if cS < c(wi
i−n+1)The values 0 ≤ dni ≤1 are optimized on a held-out 
orpus.This method is di�erent to interpolated Kneser-Ney smoothing in two aspe
ts. The�rst di�eren
e is that we use a relative dis
ount fa
tor and not an absolute dis
ountfa
tor. The se
ond di�eren
e is that we do not use spe
ial 
ounts for bigrams andunigram distributions, but use the relative dis
ounted 
ounts as given by equation6.6 for the bigram distribution and use the maximum likelihood estimate for theunigram distribution.This formulation 
an be used 
onveniently with soft 
ounts, and in fa
t we see inse
tion 6.3 that it also outperforms Kneser-Ney smoothing when used with dis
rete
ounts.6.2 The latent words language modelAs dis
ussed in the previous se
tion, the performan
e of language models is limitedby the sparse nature of n-grams. Although smoothing methods partially alleviatethis problem, they do not fully solve it. A major weakness of these models is thatthey treat every word in the text as a unique symbol, independent of all othersymbols. This ignores the fa
t that many words are synonyms or have related



72 THE LATENT WORDS LANGUAGE MODELmeanings, and that natural language typi
ally uses 
onstru
tions where 
ertain
lasses of words (e.g. part-of-spee
h 
lasses) always o

ur on the same position(e.g. �determiner noun verb�). Let us assume for example that we observe thesequen
e �let's meet on Tuesday� in the training 
orpus. If the model would knowthat �Tuesday� is similar to �Monday�, �Wednesday� et
., we 
ould predi
t thatthe sequen
es �let's meet on Monday�, �let's meet on Wednesday�, et
. 
an also beobserved in the test 
orpus.In this se
tion we build a model that aims at exa
tly this goal: learning words thatare synonyms or that have related meanings, and use these in an improved modelfor the predi
tion of sequen
es in the test 
orpus. We �rst des
ribe the model inse
tion 6.2.1. Although the de�nition of the model is simple, standard algorithms
an not be employed due to their large time 
omplexity. We dis
uss novelalgorithms for inferen
e (se
tion 6.2.2), training (se
tion 6.2.3) and predi
tingthe probability of unseen texts (se
tion 6.2.4). Finally we dis
uss some additionalte
hniques used in the implementation in se
tion 6.2.5.6.2.1 Des
ription of the modelThe latent words language model (LWLM) introdu
es for a text w = [w1...wN ] oflength N for every observed word wi at position i a hidden (or latent) word hiwith an unknown value from the vo
abulary V. This model is a generative modelfor natural language that, for a given vo
abulary V , length N , 
ounts C andsmoothing parameters γ, generates a sequen
e of hidden symbols h = [h1...hN ]and a sequen
e of observed words w = [w1...wN ]. The generative pro
ess is de�nedas follows:For i from 1 to N doSample a hidden word hi from the distribution P (hi|h
i−1
i−n, C, γ)Sample an observed word wi from the distribution P (wi|hi, C, γ)Here we impli
itly understand that for the �rst words in the sequen
e, i.e. i < n,we only use the available 
ontext, e.g. if i = 1 then P (hi|h

i−1
i−n, C, γ) = P (hi|C, γ).This model 
ontains two probability distributions. The �rst distribution,

P (hi|h
i−1
i−n, C, γ), models the dependen
y between the 
urrent hidden word andthe previous hidden words, and is modeled as a 
ategori
al distribution, where theraw 
ounts are smoothed with relative dis
ounted Kneser-Ney smoothing (RDKN).The se
ond distribution P (wi|hi, C, γ) models the dependen
y of the observedword on the hidden word and is also a 
ategori
al distribution, smoothed with a
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Figure 6.3: BN of the latent words language model. The words wi (gray nodes)are observed and the hidden words h (white nodes) are hidden variables.variant of RDKN
P (wi|hi, C, γ) =

c(wi, hi) × d(c(wi, hi))

c(hi)
+ δ(hi)

c(wi)

Nt

(6.8)We will use the term �smoothing parameters�, with symbol γ, to denote the
olle
tion of dis
ount fa
tors used in these two smoothing methods.This model 
an also be expressed as a Bayesian network, shown in �gure 6.3. Fromthis �gure we see that the stru
ture of the model is equivalent to the stru
tureof a hidden Markov model (HMM) (Baum et al., 1970; Baker, 1975). However,the two models have important di�eren
es: where the latent variables in a ² aresele
ted from a small set of 
ategories, we model the latent variables as unseenwords that 
an be sele
ted from the entire vo
abulary. Furthermore we use a novelsmoothing method for the 
ontext model (i.e. RDKN), and algorithms for HMM'stypi
ally assume that the hidden variables are only dependent on the previousvariable (i.e. n = 2), where we will use mu
h longer dependen
ies (i.e. n ≥ 5),whi
h has important 
onsequen
es for the algorithms employed for training andinferen
e.One interpretation of this model states that a person who wishes to express a
ertain message, 
an 
hoose a large number of ways of expressing this message.However, when the message is uttered (or written down), this person has to 
hoseone spe
i�
 sequen
e of words, although many words in this sequen
e 
ould berepla
ed with a synonym or related word while keeping the meaning of the messageinta
t. The hidden word hi 
an be seen to represent these possible alternativewords at a 
ertain position i in this sequen
e. The 
olle
tion of possible alternativesis modeled as a probability distribution P (hi|w) over all words in the vo
abulary.This interpretation is of 
ourse very loosely de�ned, and probably also a bit over-ambitious. We will however see that by training this model on a large 
olle
tionof unlabeled texts, we 
an learn word similarities with a high a

ura
y. These



74 THE LATENT WORDS LANGUAGE MODELword similarities 
an then be used su

essfully to improve language models andinformation extra
tion methods.We develop three methods for this model: inferen
e, where we estimate theexpe
ted value of the hidden variables given the observed words, training, wherewe estimate the parameters of the model given a large training text, and densityestimation, where we predi
t the probability of unseen texts.6.2.2 Inferen
eGiven a sequen
e of words wtest = [w1...wNu
] and the parameters C and γ, wewant to �nd the probability distribution P (hi|wtest, C , γ) of the hidden word hion position i.The forward-ba
kward algorithm Traditionally in HMM's this probability is
omputed with the forward-ba
kward (i.e. Baum-Wel
h) algorithm, whi
h
omputes this probability as

P (hi|wtest, C , γ) =
∑

h
i−1
i−n+2

α(hi
i−n+2)β(hi

i−n+2)

P (wtest|C, γ)
(6.9)where α(hi

i−n+2) = P (wi
1,h

i
i−n+2, C , γ) is the joint probability of observing

w
i
1 together with the sequen
e h

i
i−n+2, and β(hi

i−n+2) = P (wNu

i+1|h
i
i−n+2, C , γ)represents the 
onditional probability of observingw

Nu

i+1 given the sequen
e h
i
i−n+2.Both values are de�ned re
ursively as

α(hi
i−n+2) = P (wi|hi, C , γ)

∑

hi−n+1

α(hi−1
i−n+1)P (hi|h

i−1
i−n+1, C , γ) (6.10)and

β(hi
i−n+2) =

∑

hi+1

β(hi+1
i−n+3)P (wi+1|hi+1, C , γ)P (hi+1|h

i
i−n+2C, γ) (6.11)The values α(hi

i−n+2) 
an been seen as messages that travel from the start of thesequen
e to the end, while the values β(hi
i−n+2) 
an be seen as messages thattravel from the end of the sequen
e to the start. As the forward and ba
kwardmessages travel through the 
hain, at every position in the sequen
e we need to
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i−n+2) and β(hi

i−n+2) for every possible sequen
e h
i
i−n+2,requiring the storage of 2 × |H |n−1 values, where |H | is the number of hiddenstates. To 
ompute the next α(hi+1

i−n+3) (or β(hi−1
i−n+1)), we need to multiply andsum these values for every possible hidden state in the next position, requiringa 
omputational 
ost of O(|H |n). This needs to be performed for every position,resulting in a total 
omplexity of O(|H |n × Nu). For more information on theforward-ba
kward algorithm we refer to (Bishop, 2006).The 
omputational 
ost of the forward-ba
kward algorithm for standard HMM's islow be
ause most implementations of hidden Markov models use only the previous
ontext, i.e. n = 2, and use a small number of hidden states, i.e. 100 < |H | < 102.In our model the number of the hidden variables is the size of the vo
abulary,whi
h is 104 < |V | < 106 for any reasonable sized 
orpus, and we want to usea mu
h larger 
ontext, e.g. n = 5. It is thus 
lear that using the traditionalforward-ba
kward algorithm is not an option here.Forward-forward beam sear
h We develop an approximate version of theforward-ba
kward algorithm with lower time 
omplexity, termed the forward-forward beam sear
h. We introdu
e a fun
tion trim(α(hi

i−n+2)) de�ned by
trim(α(hi

i−n+2)) =

{

α(hi
i−n+2) if rank(α(hi

i−n+2)) ≥ b

0 otherwisewhere the rank rank(α(hi
i−n+2)) is found by sorting all possible sequen
es h

i
i−n+2in des
ending order a

ording to the value of α(hi

i−n+2). The trim fun
tion thusremoves for a 
ertain position all values that are not among the b most likely values.We then de�ne the approximate α′(hi
i−n+2)

1
α′(hi

i−n+2) = σi−n+1P (wi|hi)
∑

hi−n+1

trim(α′(hi−1
i−n+1))P (hi|h

i−1
i−n+1) (6.12)this value is an approximation of α(hi

i−n+2) that takes into a

ount only the bmost likely values of α′(hi−1
i−n+1). This value will be 
loser to α(hi

i−n+2) within
reasing b, and will be equal if b ≥ |H |n−1. The fa
tor σi−n+1 is the inverse ofthe probability mass not dis
arded on position i − n + 2, given by
σi−n+1 =

∑

hi
i−n+2

α′(hi−1
i−n+1)

∑

hi
i−n+2

trim(α′(hi−1
i−n+1))This fa
tor makes sure that the total probability mass in the network remainsequal to 1.0. On every position we need to perform the summation in equation1For brevity we omit the parameters C and γ from these and the following equations.



76 THE LATENT WORDS LANGUAGE MODELAlgorithm 1 Forward beam sear
h for text wNt
.Require: V , C, γ, wtrain, d, n, bEnsure: Ai = α′(hi

i−n+2) for 1 ≤ i ≤ Nt1: A0 ⇐ {([ ], 1.0)}2: for i = 1 to Nt do3: Ai ⇐ {}4: for all (hi−1
i−n+1, α) in Ai−1 do5: for all hi in V do6: α∗ ⇐ α × P (hi|h

i−i
i−n+1, C, γ) × P (wi|hi, C, γ)7: h

i
i−n+2 ⇐ [hi−1

i−n+2hi]8: Ai ⇐ Ai ∪ {(hi
i−n+2, α

∗)}9: end for10: end for11: Ai ⇐ sumSame(Ai)12: Ai ⇐ trim(Ai,b)13: end for6.12 with a time 
omplexity of O(b|V |), and we need to sort these values to �ndthe b most likely values in the next iteration, with 
omplexity O(b|V | log(b|V |)).The pseudo-
ode for the forward beam sear
h is shown in algorithm 1. Whenthis algorithm has been exe
uted for a given text wtrain, the 
olle
tion Ai
ontains all α′(hi
i−n+2) for position i. The fun
tions sumSame(Ai) and trim(Ai)are not shown in the algorithm and perform the following operations on Ai :

sumSame(Ai) sums the probabilities of all stru
tures (hj
j−n+2, α) in Ai that havethe same value for h

j
j−n+2. The fun
tion trim(Ai, b) is the implementation of the

trim(α′(hi−1
i−n+1)) operator introdu
ed earlier, i.e. it sorts all the values a

ordingto de
reasing α, sele
ts the b most likely and res
ales the remaining values with

σi−n+1 to make sure that the total probability mass remains 1.0.We 
ould de�ne a similar trimmed version of β(hi
i−n+2), but here we fa
e anadditional di�
ulty. We use relative dis
ounted Kneser-Ney smoothing to 
ompute

P (hi+1|h
i
i−n+2, C , γ), whi
h requires the 
omputation of δ(hi

i−n+2). This valuedepends on all possible values for hi−n+2, and limiting the 
omputation to only the
b most likely values of hi−n+2 would result in a degenerate probability distribution.For this reason we introdu
e a new forward probability γ(hi

i−n+2, hj) whi
h is thejoint probability of observing the words w
i
1, the sequen
e h

i
i−n+2 and the hiddenvariable hj . This value is de�ned for i ≥ j and is given by

γ(hi
i−n+2, hj) =

{

P (wi|hi)
∑

hi−n+1
α(hi−1

i−n+1)P (hi|h
i−1
i−n+1) if i = j

P (wi|hi)
∑

hi−n+1
γ(hi−1

i−n+1, hj)P (hi|h
i−1
i−n+1) if i > j



THE LATENT WORDS LANGUAGE MODEL 77This value is similar to α(hi
i−n+2), but also in
ludes the probability of generating

hj . We 
an interpret γ(hi
i−n+2, hj) as a series of messages, where for every di�erentvalue of hj , a series of messages γ(hi

i−n+2, hj) is passed from position j to the endof the sequen
e. A trimmed version of this variable is de�ned as
γ′(hi

i−n+2, hj) =

{

σi−n+1P (wi|hi)
∑

hi−n+1
trim(α′(hi−1

i−n+1))P (hi|h
i−1
i−n+1) if i = j

σi−n+1P (wi|hi)
∑

hi−n+1
trim(γ′(hi−1

i−n+1, hj))P (hi|h
i−1
i−n+1) if i > jThe sum in this equation has time 
omplexity O(b|V |) and sorting the values has
omplexity O(b|V | log(b|V |)). Doing so for every position in the sequen
e resultsin a time 
omplexity of O(Nu × [b|V | log(b|V |)]).After passing all messages to the end of the sequen
e, we have a 
olle
tion ofmessages γ′(hNu

Nu−n+2, hj). To 
ompute the probability of hj given wtest we sumover all possible values of h
Nu

Nu−n+2, i.e.
P (hj |wtest, C

τ ) =

∑

h
Nu
Nu−n+2

γ(hNu

Nu−n+2, hi)

P (wtest|Cτ )
≃

∑

h
Nu
Nu−n+2

γ′(hNu

Nu−n+2, hi)

P (wtest|Cτ )Summarizing, we �rst pass a series of forward messages α(hi−1
i−n+1) from the startof the sequen
e to the end. We then pass for every position j in the sequen
e, aseries of γ(hi−1

i−n+1, hj) messages from that position to the end of the sequen
e. Oneimportant disadvantage of this approa
h is that in the original forward-ba
kwardalgorithm only a single pass of forward messages and a single pass from ba
kwardmessages is required to 
ompute the probability distribution for every hi. Inour formulation however we �rst perform a single pass of forward messages, andthen perform, for every position i, a pass of forward messages γ(hj
j−n+2, hi) fromposition i to the end of the sequen
e. This greatly in
reases the 
omplexity ofthe algorithm. Therefore we make an additional assumption: we assume that theprobability distribution of hi given w

Nt

1 is approximately equal to the probabilityof hi given the words w
i+δ
1 for a 
ertain distan
e δ.
P (hi|w

Nt

1 , Cτ ) ≃ P (hi|w
i+δ
1 , Cτ )This seems plausible sin
e the words that o

ur in the sequen
e far away from thehidden word will have little in�uen
e on this word.The total time 
omplexity of the forward-forward beam sear
h is O(Nu × (1+d)×

(b|V |+ b|V | log(b|V |)), whi
h will be, even for fairly high values for b and d, mu
hlower than the original time 
omplexity of the forward-ba
kward algorithm.The pseudo-
ode for the forward-forward beam sear
h is shown in algorithm 2.The γ′(hj−1
j−n+1, hi) values are stored in a data stru
ture Γj = {(hj−1

j−n+1, hi, γ)}



78 THE LATENT WORDS LANGUAGE MODELAlgorithm 2 Computation of expe
ted values of h1, ..., hNt
given wNtRequire: V , C,γ, wtrain, δ, b, A1, ..., ANtEnsure: Hj ≃ P (hj |wtrain, C, γ) for 1 ≤ j ≤ Nt1: for j = 1 to Nt do2: Γj ⇐ {}3: for all (hj

j−n+2, α) in Aj do4: Γj ⇐ Γj ∪ {(hj
j−n+2, hj , α)}5: end for6: for i = j + 1 to j + δ do7: Γ′

i ⇐ {}8: for all (hi−1
i−n+1, hj , γ) in Γi−1 do9: for all hi in V do10: γ∗ ⇐ γ × P (hi|h

i−1
i−n+1, C, γ) × P (wi|hi, C, γ)11: h

i
i−n+2 ⇐ [hi−1

i−n+2hi]12: Γ′
i ⇐ Γ′

i ∪ {(hi
i−n+2, hj , γ

∗)}13: end for14: end for15: Γ′
i ⇐ sumSame(Γ′

i)16: Γi ⇐ trim(Γ′
i,b)17: end for18: Hj ⇐ {}19: for all (hj+δ

j+δ−n+2, hj , γ) in Γj+δ do20: Hj ⇐ Hj ∪ {(hj, γ)}21: end for22: Hj ⇐ sumSame(Hj)23: end forwhere γ is the value of γ′(hj−1
j−n+1, hi). In every step we 
ompute for every possible

(hj−1
j−n+1, hi, γ) in Γj−1, the new probability γ∗, and add (hj

j−n+2, hi, γ
∗) to Γ′

j .The fun
tions sumSame(Γ′
i) and trim(Γ′

i) (not shown in algorithm 2) perform thefollowing operations on Γ′ : sumSame(Γ′) sums the probabilities of all stru
tures
(hj

j−n+2, hi, γ) in Γ′ that have the same value for h
j
j−n+2 and for hi. The fun
tion

trim(Γ′, b) is the implementation of the trim(γ′(hj−1
j−n+1, hi)) operator introdu
edearlier, i.e. it sorts all the stru
tures a

ording to de
reasing γ, sele
ts the bmost likely values and res
ales the 
ounts by σi−n+1 to make sure that the totalprobability mass remains 1.0.Related work We are not the �rst authors dis
ussing the high time 
omplexityof HMM's, although none of the previous proposed methods 
ould be used here.Mit
hell et al. (1995) and Yu and Kobayashi (2003) propose algorithms that redu
ethe time 
omplexity of se
ond order expli
it-duration HMM's, but the suggested



THE LATENT WORDS LANGUAGE MODEL 79algorithms are still quadrati
 in the number of hidden states, whi
h is also the 
asein the on-line learning algorithm proposed by Krishnamurthy and Moore (1993).Shue and Dey (2002) develop a e�
ient algorithm for HMM's that have hiddenstates that are nearly 
ompletely de
omposable, where the hidden states 
an begrouped together in �super-states�, whi
h is not the 
ase here.6.2.3 TrainingDuring training we want to �nd parameters C and γ that optimize the likelihoodof the model on an unseen test sequen
e. For this we use two 
orpora, a large
orpus wtrain = [w1...wNt
] and a smaller 
orpus wheldout = [w1...wNh

]. wtrain isused to determine the 
ounts C and wheldout is used to determine the smoothingparameters γ.We �nd the 
ounts C that maximize the likelihood of the model on the training
orpus wtrain i.e. we sele
t the parameters su
h that the model �explains� theobserved words in the training 
orpus. In HMM's, this is typi
ally performed usingthe expe
tation-maximization (EM) algorithm. The algorithm starts from a initialestimate of the 
ounts C1. This estimate is then improved in several iterations,where every iteration performs an expe
tation step and a maximization step. Sin
eevery step improves the likelihood of the model on wtrain, it is guaranteed to�nd a (possibly lo
al) maximum likelihood estimate. In the expe
tation step theexpe
ted value of every hidden variable P (hi|wtrain, Cτ , γτ ) is 
omputed with theforward-ba
kward algorithm.For the LWLM, we perform three modi�
ations to this algorithm. The �rstmodi�
ation is that we �rst train a standard n-gram language model on theobserved words of the training 
orpus. We then set the probability distributionof every hidden word hi in the training 
orpus to P (wi|w
i−1
1 ,wNt

i+1), i.e. to theprobability of the observed word, given all words that o

ur before and after thisword. This probability is 
omputed as
P (wi|w

i−1
1 ,wNt

i+1) ∼ P (wi|w
i−1
i−n+1)

n−1
∏

m=1

P (wi+m|wi+m+n−1
i+m+1 )This assignment makes the assumption that likely hidden words at a 
ertainposition are the words that are likely to be observed in that 
ontext, or morespe
i�
ally, that are likely to be generated by the n − 1 previous observed words,and that are likely to generate the n − 1 next observed words. We assign thesedistributions to the hidden variable hi on every position and then 
onstru
t theinitial 
ounts C1 from these distributions by 
olle
ting the following soft 
ounts:(1) the frequen
y of the hidden word hi generating the observed word wi and (2)



80 THE LATENT WORDS LANGUAGE MODELthe frequen
y of the m-gram of hidden words h
i
i−m+1 o

urring in the sequen
e ofhidden words,h = [h1...hN ], where the length m ranges from n to 1.The se
ond modi�
ation to the Baum-Wel
h algorithm is the use of the forward-forward beam sear
h to 
ompute an approximation of P (hi|wtrain, Cτ , γτ ). Theapproximate values found by this method are used to 
onstru
t the new 
ounts

Cτ+1.2The third modi�
ation is that we also update the smoothing parameters γτ+1: weuse an iterative line-sear
h to �nd the parameters that optimize the likelihood ofthe parameters given the held-out 
orpus. After the smoothing parameters havebeen optimized, we again perform an iteration of the EM-algorithm. This 
y
le isrepeated until the parameters have 
onverged and the perplexity on the held-out
orpus does not de
rease anymore.6.2.4 Predi
ting an unseen textWe have explained how we 
an estimate the hidden words for a parti
ular giventext. However, we would also like to use the model to predi
t the probability
P (wtest|C, γ) of an unseen text wtest = [w1...wNu

]. Standard HMM's use theforward algorithm to 
ompute this value
P (wtest|C, γ) =

∑

h
Nu
Nu−n+2

α(hNu

Nu−n+2)where α(hi
i−n+2) is de�ned as in the previous se
tion. This algorithm thuse�e
tively passes a series of messages from the start of the sequen
e to the end.The messages α(hNu

Nu−n+2) at the end of the sequen
e are then summed, resultingin the probability of observing the entire sequen
e.Sin
e the time 
omplexity of this algorithm is O(Nu|V |n), we propose the forwardbeam sear
h. This method uses the trimmed α′(hi
i−n+2) to 
ompute

P (wtest|C, γ) =
∑

hi
i−n+2

α′(hi
i−n+2)where α′(hi

i−n+2) is de�ned as in the previous se
tion. Note that, although thismethod drops unlikely α′(hi
i−n+2) values, it assigns a non-zero probability to everypossible sequen
e of observed words, thanks to the smoothing method used inequation 6.8. This method is outlined in algorithm 3.2Note that in fa
t we also need to estimate P (hi

i−n+1
|wtrain, Cτ , γτ ), i.e. the probabilityof the observing the sequen
e h

i

i−n+1
given the training text and the 
urrent parameters. Forstandard HMM's, this value 
an easily be 
omputed using the forward and ba
kward messages(see Bishop (2006)). An approximation to this value is also 
omputed with the forward-forwardbeam sear
h, we refer to se
tion C in the appendix for details on this method.



THE LATENT WORDS LANGUAGE MODEL 81Algorithm 3 Compute probability of observed text wtestRequire: wtest, ANtEnsure: P ≃ P (wtest|C, γ)1: P ⇐ 02: for all (hj
j−n+2, α) in ANt

do3: P ⇐ P + α4: end forN-gram models that map words to hidden variables or 
lusters often improve theability of a model to predi
t the probability of unseen sequen
es, but they 
an alsohurt pre
ision when assigning to mu
h weight to unseen sequen
es (Goodman,2001). For this reason it is often a good idea to interpolate these models with astandard n-gram model. We de�ne an interpolated version of the LWLM as
P (wtest|C, γ) =

Nt
∏

i=1

[

αP (hi|h
i−1
i−n+1, C , γ) × P (wi|hi, C , γ) + (1 − α)Prkn(wi|w

i−1
i−n+1)

]where 0 ≤ α ≤ 1 is a 
onstant value optimized on a held-out text.6.2.5 Implementation of the LWLMWe have dis
ussed a number of adaptations to the standard algorithms used forHMM's to redu
e the time 
omplexity of these algorithms. However, even withthis redu
ed 
omplexity, a number of additional optimizations were implementedin order to be able to run the LWLM on a large dataset.Distributed training We have developed a distributed 
omputing infrastru
turethat enables the distributed 
omputation of the LWLM on a large numberof 
omputers. This infrastru
ture is robust, very easy to set-up, downloadsautomati
ally the ne
essary 
lass-�les and datasets, and has remote ex
eptionhandling. Furthermore it has been implemented for performan
e, with data
a
hing, load balan
ing and automati
ally sele
tion of the fastest 
omputing 
lients.For the full des
ription of this ar
hite
ture we refer to se
tion A in the appendix.Additional optimization of the forward-forward and forward beam sear
hWe have seen how the time 
omplexity of the forward-forward beam sear
h is
O(Nt(b|V | + b|V | log(b|V |)) and the 
omplexity of the forward beam sear
h is
O(Nu(b|V | + b|V |log(b|V |)). In fa
t, these algorithms are dominated by the b|V |term, sin
e sorting the values, with 
omplexity of b|V |log(b|V |), has a very small
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onstant fa
tor, and 
an be ignored in pra
ti
e. Be
ause of the large size of |V |,performing b|V | 
omputations makes the algorithm too slow for many appli
ations.For this reason we only 
onsider a subset W ⊂ V of all hidden words. The possiblehidden words hi that are sele
ted for a parti
ular observed word wi, are the wordswith highest values P (wi|hi)P (hi). We set the size of W greater then b, butsubstantially smaller than V , e.g. often we set b = 50 and |W | = 200. Thisoptimization is used in the forward-forward beam sear
h and the forward beamsear
h. It is however not used when 
omputing the likelihood of the model on atest text, sin
e sele
ting W based on the observed word wi when trying to predi
tthis word, is a form of 
heating, resulting in an unrealisti
 low likelihood.6.3 Evaluating the proposed language modelsIn this se
tion we evaluate the performan
e of the di�erent language models. Theperforman
e of a language model is typi
ally measured in terms of the perplexityof the model on the unseen test 
orpus w = [w1...wNu
]

Nu

√

1

P (wT )where P (wT ) =
∏Nu

i=1 P (wi|w
i−1
1 ) is the probability of the test 
orpus. Theperplexity 
an be seen as the 
onfusion of the model. For example, a languagemodel that assigns equal probability to 100 words at every position in the held-out
orpus has a perplexity of 100 (assuming that at every position the observed wordbelongs to the set of predi
ted words). One attra
tive property of the perplexitymeasure is that the �true� model for any data sour
e will have the lowest possibleperplexity for that sour
e. Thus, the lower the perplexity of our model, the 
loserit is in some sense, to the model of natural language employed by humans.We �rst 
ompare the performan
e of the latent words language model with a otherlanguage models in se
tion 6.3.1 and then evaluate 
ertain aspe
ts of the proposedmodels in se
tion 6.3.2.6.3.1 ComparisonWe 
ompare the performan
e of the language models presented here on threedi�erent 
orpora. The �rst two 
orpora, Reuters and APNews3, are 
olle
tionsof news arti
les that are distributed respe
tively by the Reuters and Asso
iatedPress news agen
ies. Both 
orpora have a large fra
tion of �nan
ial news, together3We would like to thank Yoshua Bengio and Hugo Laro
helle for providing this 
orpus.



EVALUATING THE PROPOSED LANGUAGE MODELS 83with a smaller amount of general news. The third 
orpus EnWiki is a 
olle
tion ofen
y
lopedia arti
les from the English language Wikipedia. The APNews 
orpuswas prepro
essed as des
ribed by (Bengio et al., 2003), the other two 
orpora wereprepro
essed by 
on
atenating all senten
es and mapping all words that o

urredless than 3 times in the 
ombined training, held-out and test 
orpus to a new,�UNKNOWN� symbol. All pun
tuation was preserved. The vo
abulary size of the
orpora is 39373 for Reuters, 15247 for APNews and 54371 for EnWiki, re�e
tingthe larger topi
al variation of the EnWiki 
orpus. For both 
orpora we use a�xed se
tion of 100K 
onse
utive words as a held out 
orpus, used to optimize thesmoothing parameters of every methods, and a se
tion of 100K 
onse
utive wordsas a test 
orpus, used to measure the perplexity of every model.Table 6.1 shows the performan
e of the di�erent models on the three 
orpora. We
ompare 5-gram models with interpolated smoothing (IP), absolute dis
ountedKneser-Ney smoothing (ADKN ), relative dis
ounted Kneser-Ney smoothing(RDKN ), the latent words language model (LWLM ) and the interpolated versionof this model (int. LWLM ). For 
omparison's sake we also in
lude the results ofthe full-ibm-predi
t model (IBM ), whi
h is an existing language model that 
reates
lusters of words that are synta
ti
ally and semanti
ally similar, but 
ontrary toour method, all words are hard-assigned to a single 
luster (Goodman, 2001). Itwas found to be the best 
luster-based model by Goodman (2001).We make the following observations:
• Interpolated smoothing performs mu
h worse then the other languagemodels, whi
h is well-known (e.g. Chen and Goodman (1996)).
• Relative dis
ounted Kneser-Ney smoothing 
onsistently outperforms ab-solute dis
ounted Kneser-Ney smoothing. We have performed a fair
omparison where both models used the same number of dis
ount parameters.This refutes any optimality 
laims that have been made for absolutedis
ounted Kneser-Ney smoothing (Chen and Goodman, 1996; Goodman,2001). In fa
t we suspe
t that smoothing methods that use more 
omplexmethods for dis
ounting will prove to be even more su

essful.
• The latent words language model outperforms both variants of Kneser-Ney smoothing. This shows that the algorithm su

essfully learned wordsimilarities that alleviated the sparseness problems of n-gram models. Wewill dis
uss this in more depth in se
tion 6.4.
• The interpolated latent words language model outperforms all other testedmodels. Compared to absolute dis
ounted Kneser-Ney, whi
h is a frequentused baseline, LWLM performs between 14% and 18% better. Comparedto full-ibm-predi
t model, whi
h is to our knowledge the best n-gram basedlanguage model, it performs between 7% and 10% better.



84 THE LATENT WORDS LANGUAGE MODELMethod ReutersNews APNews EnWikiIP 130.61 148.49 170.29IBM 108.38 125.65 149.21ADKN 114.96 134.42 161.41RDKN 112.37 132.99 160.83LWLM 108.78 124.57 151.98int. LWLM 96.45 112.81 138.03Table 6.1: Results in terms of perplexity of the 5-gram models with interpolated(IP), absolute dis
ounted Kneser-Ney (ADKN) or relative dis
ounted Kneser-Ney (RDKN) smoothing, of the latent words language model (LWLM) and itsinterpolated version (int. LWLM) and of the full ibm predi
t 
lass-based languagemodel (Goodman, 2001).
(a) n-gram length n (b) beam size bFigure 6.4: Perplexity of the interpolated LWLM, depending on the length of then-gram (n) or of the beam size (b).6.3.2 Additional experimentsIn the following paragraphs we investigate 
ertain properties of the interpolatedLWLM. For all experiments we train the model on the 5M Reuters 
orpus.In a �rst experiment we justify the 
hoi
e for a relatively large value for n. Figure6.4a shows how the perplexity of the model varies with in
reasing n. As n in
reases,we take into a

ount a larger 
ontext, resulting a lower perplexity of the model.We see that we need to use a value of n = 4 or n = 5 for a 
ompetitive languagemodel, justifying the approximate te
hniques developed in this 
hapter to makeusing su
h a large 
ontext window possible.In a se
ond experiment we see the in�uen
e of the beam size for the LWLM. Forthis we measure the perplexity of the interpolated LWLM with di�erent beam
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Figure 6.5: Perplexity of the interpolated LWLM for di�erent number ofparameters employed in the Kneser-Ney smoothing method.sizes. We see from �gure 6.4b that even with a beam size of 1, i.e. when we only
onsider the single most likely value for the hidden words, the LWLM outperformsRDKN (whi
h a
hieves 112.37 on this 
orpus). With in
reased beam width theLWLM a
hieves lower perplexities, although this di�eren
e is small for beam sizeslarger then 20. In our experiments we have 
hosen a 
onservative beam width of
50.In a third experiment we see the in�uen
e of the number of smoothing parametersemployed in our model. We use the de�nition given in se
tion 6.1.4 for relativedis
ounted Kneser-Ney smoothing: for the n-grams hi−n+1...hi of a parti
ularlength n we 
reate for the 
ounts c(hi−n+1...hi) a number of equally populatedintervals. The 
ounts in a parti
ular interval are then dis
ounted with a 
ertainfa
tor, unique to this interval. As we in
rease the number of intervals (and thusthe number of dis
ount fa
tors), the model has more expressive power, most likelyresulting in a more a

urate model. Figure 6.5 shows how the perplexity of themodel 
hanges with the number of intervals employed in the dis
ount fun
tion. Wesee that it is important to use more then one interval, but after that performan
elevels o� quite qui
kly. In the experiments we set the number of intervals to 5.Note that for n-grams of di�erent length, we have a di�erent set of dis
ount fa
tors,e.g. for a model with n = 5 and 5 intervals for every dis
ount fun
tion we have atotal of 25 dis
ount fa
tors.6.4 Semanti
 a
quisitionA di�erent method for assessing the performan
e of the LWLM is to perform amanual inspe
tion of the hidden words that are estimated for a given senten
e. Aninformal evaluation has shown that the dis
overed hidden words 
apture synonymsor related words, and that the hidden words are 
ontext dependent, essentiallydisambiguating the observed words. Table 6.2 gives the hidden words for anobserved senten
e from the training 
orpus, showing that for most words 
orre
t



86 THE LATENT WORDS LANGUAGE MODELa japanese ele
troni
s exe
utive was kidnapped in mexi
oa japanese toba

o exe
utive was kidnapped in mexi
othe u.s. ele
troni
s dire
tor is abdu
ted on usaits german sales manager were killed at uka british 
onsulting e
onomist are found of australiaone russian ele
tri
 spokesman be abdu
tion into 
anadaTable 6.2: Example of the most probable hidden words (bottom rows, sorteda

ording to des
ending probability) for a given observed senten
e (top row, bold)from the Reuters training 
orpus.synonyms (e.g. kidnapped/abdu
ted, exe
utive/dire
tor) or related words (e.g.Japanese/u.s., abdu
ted/killed) are found. This expansion 
an help to solve theunderspe
i�
ation and ambiguity problems of information extra
tion from naturallanguage. In the next se
tion we will see how indeed this model does improvesemanti
 role labeling, espe
ially in the 
ontext of a limited number of trainingexamples.6.5 Related workFinding (soft) 
lusters of similar words, or �nding similarities between words, hasbeen a goal of NLP resear
hers for many years. It has been long time knownthat the similarity of two words 
ould be learned by 
omparing their relative
ontexts in a large 
orpus: words o

urring often in similar 
ontexts tend to have asimilar meaning. This was maybe most famously formulated as the distributionalhypothesis, supported by theoreti
al linguists su
h as Harris (1954) and Firth(1957).A large body of work has fo
used on methods to model the 
ontext of a parti
ularword, and to 
ompute a similarity measure based on these 
ontexts. Frequent
hoi
es to model the 
ontext is a window of words or the dire
t dependents of theword in a synta
ti
 dependen
y tree. Many methods have been used as similaritymeasures, ranging from the 
osine measure, to the Ja

ard index or the Kullba
k-Leibler distan
e (Pereira et al., 1993; Grefenstette, 1994; Lin, 1998b; Grishmanand Sterling, 1994; Hearst, 1992).Other resear
hers have fo
used on using generative models to learn 
lasses of words.Related to our resear
h is the work on unsupervised HMM's to learn a part-of-spee
h tagger (Merialdo, 1994). Typi
ally a di
tionary provides 
onstraints in theform of possible part-of-spee
h tags for a large 
olle
tion of words, whi
h are usedduring the forward-ba
kward algorithm to learn part-of-spee
h tags for all words inthe 
orpus. Without these 
onstraints, it is hard to learn a

urate part-of-spee
h



CONCLUSIONS OF THIS CHAPTER 87taggers (Smith and Eisner, 2005), although the importan
e of 
orre
t smoothingmethods has also been re
ognized (Wang and S
huurmans, 2005). Re
ently, therehas been some work on learning HMM's with Bayesian te
hniques su
h as Gibbssampling (Goldwater and Gri�ths, 2007; Johnson, 2007). These methods however
ould not be employed in this 
ontext, sin
e they require impra
ti
ally many (upto 20000) iterations to 
onverge.Other generative models were designed spe
i�
ally for language modeling. Class-based language models aim to over
ome the sparseness problems of n-gramlanguage model by 
lustering all words in a large number of 
lasses (Brown et al.,1992; Goodman, 2001). Typi
ally a hard assignment is 
hosen, where a wordbelongs to exa
tly one 
lass. Although these methods outperform standard Kneser-Ney smoothing, we have shown in the previous se
tion that the LWLM outperformsthese models in terms of perplexity on unseen texts. Furthermore, we will see inthe next se
tion that the probabilisti
 distan
es learned with the LWLM are moreuseful for improving information extra
tion methods than the 
lasses.Finally we would like to mention the interesting work performed by Collobert andWeston (2008) who propose a 
onvolutional neural network ar
hite
ture that isjointly trained for language modeling and for a number of di�erent informationextra
tion tasks. During the joint training, a look-up table is learned that mapswords to a number of hidden 
lasses. After training these 
lasses representsynta
ti
ally and semanti
ally related words, similar to the results a
hieved inour work. Another 
ommon point was that the authors found that a 
lassi�erfor semanti
 role labeling a
hieved best results when trained jointly as a languagemodel. In the next 
hapter we will see this is a result that is also 
on�rmed byour work.6.6 Con
lusions of this 
hapterIn this 
hapter we have introdu
ed the latent words language model. We startedby answering the question �What happens if we repla
e the hidden states ina hidden Markov model with hidden words?�. We saw that this model wouldhave an infeasible large time 
omplexity when 
omputed exa
tly, and we havethus introdu
ed a number of approximate methods with lower time 
omplexity.The forward beam sear
h was proposed as an approximate variant of the forwardalgorithm with lower time 
omplexity. This algorithm was used in the forward-forward beam sear
h to 
ompute the expe
ted value of the hidden words given anobserved text, and in a method to 
ompute the probability of an unseen text.We have 
ompared the LWLM with a number of other language models andseen that the interpolated LWLM outperforms all other n-gram models. Weattribute this to the fa
t that the word similarities lessen the sparseness problem of



88 THE LATENT WORDS LANGUAGE MODELtraditional n-gram models. We also outperform the full-ibm-predi
t model, whi
hlearns hard word 
lusters. This 
an be explained by the fa
t that our probabilisti
model is able to learn weighted similarities, i.e. it doesn't assume that a word is
ompletely similar or dissimilar to another word.Finally an informal inspe
tion showed that the learned word similarities 
orrelatewith human assessment of similar words, and that the hidden words 
an be used todisambiguate a 
ertain observed in a 
ertain 
ontext. In the next 
hapter we willsee how these 
an be used to augment supervised information extra
tion methods.



Chapter 7Using unsupervised modelsfor information extra
tionIn 
hapter 5 we argued that all weakly supervised models rely on the sameassumption: examples that are 
lose together in a high-density region have thetenden
y to be assigned the same label. In that 
hapter we have then proposedan approa
h where a single Bayesian network modeled both the spa
e of examplesand the labels assigned to these examples. Unlabeled data was then added to thismodel by 
onsidering the labels of the unlabeled examples as hidden variables that
ould be automati
ally estimated with Markov 
hain Monte Carlo methods.In this 
hapter we dis
uss a di�erent approa
h to weakly supervised learning: weuse one unsupervised Bayesian network to model the spa
e of examples and feedthe stru
tures learned by this model in a se
ond Bayesian 
lassi�er that is usedfor 
lassi�
ation. In this 
hapter we 
onsider two models to model the inputexamples: the latent words language model and a 
lass-based language model. Wefeed the results of these models in a supervised dis
riminative 
lassi�er. We testthis approa
h on two information extra
tion tasks: word sense disambiguation andsemanti
 role labeling.7.1 Unsupervised modelsWe �rst train two unsupervised models on unlabeled data. The �rst model is thelatent words language model (LWLM) dis
ussed in the previous 
hapter. We trainthis model on a 20M words Reuters 
orpus to learn the 
ounts C and smoothingparameters γ (see se
tion 6.2.2). We then use this model to �nd the probability89



90 USING UNSUPERVISED MODELS FOR INFORMATION EXTRACTIONdistribution P (hi|w
Nt

1 , C, γ) of hidden words hi for every word wi in the trainingand test data of the information extra
tion task at hand.The se
ond unsupervised model used in this 
hapter is the 
lass-based languagemodel full ibm predi
t (Goodman, 2001), whi
h was also trained on the same 20MReuters 
orpus. This model learns an assignment of every word in the vo
abularyto a 
luster ci. On
e this assignment is learned, we 
an trivially assign the 
orre
t
luster to every word in the training and test data for the information extra
tiontask. The number of 
lusters is optimized on a held-out 
orpus and was sele
tedto be 1250.Both unsupervised models have exa
tly the same goal: minimizing the perplexityof the model on an unseen text. The main di�eren
e is that the �rst modellearns a probabilisti
 mapping from the observed words to latent words, wherethe se
ond model uses a hard mapping, where every observed word is assigned toa single 
luster. A se
ond important di�eren
e is the number of latent variables:for the LWLM the number of hidden variables is equal to the number of wordsin the vo
abulary, while for the 
lass-based language model the number of hiddenvariables is equal to the number of 
lasses.7.2 Words Sense DisambiguationWe �rst dis
uss weakly supervised learning for word sense disambiguation (WSD).WSD, was des
ribed in se
tion 3.3 as the task of sele
ting the right sense of aparti
ular word from a �ne-grained di
tionary of di�erent senses depending on the
ontext the word o

urs in. We saw how the generative and dis
riminative modelsfor this task use a large number of features extra
ted from the 
ontext to performword disambiguation. In this se
tion we will expand this model to the weaklysupervised 
ase where we in
orporate stru
tures learned from an unsupervisedmodel.7.2.1 Expanding the set of featuresWe �rst 
onsider a method that employs the hidden words estimated by the LWLM.Given the hidden words for both the Sem
or training set and the Senseval3 testset, we expand the standard set of features f(wj) (se
tion 4.3.1) with two typesof probabilisti
 features. The �rst type is the hidden word for the word beingdisambiguated. |V | extra values are thus appended to the feature ve
tor f(wj),
ontaining the probability distribution over the |V | possible values for the hiddenvariable hi. The se
ond type of features are the probability distributions for thehidden variables within a 
ertain window of the 
urrent word. Also for these |V |probability values are appended to the feature ve
tor.



SEMANTIC ROLE LABELING 91features nouns verbs adje
tives allstandard 65.12 68.15 54.10 66.32+hidden words 67.36 69.35 55.06 67.61+
lusters 66.5 68.59 55.20 66.97Table 7.1: Results (in terms of % a

ura
y) for word sense disambiguation on theSenseval3 dataset using a supervised dis
riminative 
lassi�er with extra featuresderived from hidden words or 
lusters from a 
lass-based language model.We also test an alternative unsupervised model, the 
lass-based IBM model. Alsohere two types of features are used: the 
lass of the 
urrent word and the 
lassesof all words within a 
ertain window of the 
urrent word. These 
lasses are allappended to the feature ve
tor.On
e all feature ve
tors are expanded, they are used in a supervised dis
riminative
lassi�er that is trained on the Sem
or 
orpus.7.2.2 EvaluationThe model is tested on the test data from the Senseval3 workshop (Snyder andPalmer, 2004). Also here the feature ve
tors are expanded as des
ribed aboveand used to test the a

ura
y of the model. Table 7.1 shows that both featuresimprove the a

ura
y of the 
lassi�er. The a

ura
y for the 
lassi�er using hiddenwords features are 67.36%, 69.35% and 55.06% for nouns, verbs and adje
tivesrespe
tively, whi
h are all higher then for the supervised 
lassi�er. The a

ura
yof this 
lassi�er on all words is 67.61%, whi
h is to the best of our knowledge, thebest result a
hieved on this dataset.The 
lassi�er using 
luster features also outperforms the standard 
lassi�er,although it performs worse for nouns and verbs than the 
lassi�er that uses hiddenwords. Sin
e nouns and verbs make up the majority of the words to be labeled,this 
lassi�er also performs lower overall.7.3 Semanti
 role labelingWe 
onsider two methods for weakly supervised semanti
 role labeling (SRL). Inthe �rst method the hidden word or hidden 
lass are in
luded as an extra feature(se
tion 7.3.1). The se
ond method automati
ally expands the training set bysele
ting similar senten
es from a large unlabeled 
orpus (se
tion 7.3.2). Bothapproa
hes are evaluated in se
tion 7.3.3.
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Steward & Stevenson makes equipment powered with diesel turbines

Poland makes no machinery for a plant on that scaleFigure 7.1: Mapping dependents of one o

urren
e of �makes� to another.7.3.1 Expanding the set of featuresFirst the hidden words P (hi|w
Nt

1 , C, γ) are estimated for both the CoNLL 2008training and test set. Here we only use one type of probabilisti
 feature, the hiddenwords for the word that is 
urrently being labeled. These probabilisti
 featuresare appended to the feature ve
tor in a manner identi
al as for WSD.We also test an alternative method where we append the feature ve
tor with the
luster of the word being labeled, where the 
lusters are learned by the IBM 
lass-based language model.7.3.2 Automati
 expansion of the datasetIn this se
tion we dis
uss a di�erent approa
h, where the training set is expandedwith automati
ally labeled examples from a large unlabeled 
orpus. This methodwas �rst proposed by Fürstenau and Lapata (2009) and is tailored to the spe
i�

ase of weakly supervised learning for SRL.7.3.2.1 Original modelGiven a set of labeled verbs with annotated semanti
 roles, Fürstenau and Lapata(2009) automati
ally �nd for every annotated verb similar o

urren
es of this verbin a large 
orpus of unlabeled texts. Given two o

urren
es of the same verb atposition i with m dependents and at position j with n dependents, we de�ne amapping from i to j as an inje
tive fun
tion σ : Mi → Mσ(i) that maps a non-emptysubset Mi ⊂ {1, ..., m} from the m dependents at position i to a non-empty subset
Mσ(i) ⊂ {1, ..., n} from the n dependents at position j , where |Mi| = |Mσ(i)| anddi�erent dependents in the �rst o

urren
e are mapped to di�erent dependents inthe se
ond o

urren
e.For example, �gure 7.1 shows two o

urren
es of the verb �makes�. For the�rst o

urren
e the verb has the dire
t dependents �Stevenson� and �equipment�,while in the se
ond o

urren
e this verb has dire
t dependents �Poland� and
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hinery�. This results in a mapping from words �Stevenson� to �Poland� andfrom �equipment� to �ma
hinery�.The similarity of this mapping is 
omputed from the semanti
 and synta
ti
similarity between the mapped words and is given by
sim(σ) =

∑

k∈|Mi|

(

α · syn(wk, wσ(k)) + sem(wk, wσ(k)) − β
) (7.1)Here α is a 
onstant, weighting the importan
e of the synta
ti
 similarity

syn(wk, wσ(k)) 
ompared to semanti
 similarity sem(wk, wσ(k)), and β 
an beinterpreted as the lowest similarity value for whi
h an alignment between twoarguments is possible. syn(wk, wσ(k)) denotes the synta
ti
 similarity between thedependen
y label of word wk and the dependen
y label of word wσ(k). This valueis de�ned as 1 if the dependen
y labels are identi
al, 0 < a < 1 if the labels are ofthe same type but of a di�erent subtype1 and 0 otherwise. The semanti
 similarity
sem(wk, wσ(k)) is estimated as the 
osine similarity between the 
ontexts of wkand wσ(k) in a large text 
orpus.The similarity between two o

urren
es of the same verb on positions i and j isde�ned by

sim(wi, wj) = max
σ

sim(σ) (7.2)We thus �nd the mapping σ with highest similarity that maps dependents of verb
wi to similar dependents of verb wj and use this mapping to 
ompute the similarityof the o

uren
es at positions i and j. For every verb in the annotated training setwe �nd the s o

urren
es of that verb in the unlabeled texts with the most similar
ontexts, given the best possible alignment. We then expand the training setwith these examples, automati
ally generating an annotation using the dis
overedalignments. The variable s 
ontrols the trade-o� between annotation 
on�den
eand expansion size. The �nal model is then learned by running the supervisedtraining method on the expanded training set. The values for s, a, α and β areoptimized automati
ally in every experiment on a held-out set (disjoint from bothtraining and test set).7.3.2.2 In
luding hidden wordsWe adapt this approa
h by employing a di�erent method for measuring semanti
similarity. Given two wordswi and wσ(i) we estimate the probability distribution of1Subtypes are �ne-grained distin
tions made by the parser su
h as the underlying grammati
alroles in passive 
onstru
tions.



94 USING UNSUPERVISED MODELS FOR INFORMATION EXTRACTIONthe hidden word on these positions, whi
h we refer to with H(hi) = P (hi|w
Nt

1 , C, γ)and H ′(hσ(i)) = P (hσ(i)|w
Nt

1 , C, γ). We use the Jensen-Shannon (Lin, 1997)divergen
e to measure the distan
e between these two distributions, given by
JS(H(hi)||H

′(hσ(i))) =
1

2

[

D (H(hi)||avg) + D
(

H ′(hσ(i))||avg
)] (7.3)where avg =

H(hi)+H′(hσ(i))

2 is the average between the two distributions and
D (H(hi)||avg) is the Kullba
k-Leibler divergen
e (Cover and Thomas, 2006) givenby

D (H(hi)||avg) =
∑

hi

H(hi)log(
H(hi)

avg(hi)
) (7.4)The Jensen-Shannon divergen
e is a positive number greater than or equal to 0that is 
loser to 0 if the two distributions are more similar. This divergen
e is
onverted to a similarity value between 0 and 1 with

sim1(wi, wσ(i)) = exp(−λ × JS(H(hi)||H
′(hσ(i)))) (7.5)here λ is a 
onstant that is optimized on a held-out set.We also experiment with a similarity measure proposed by Lin (1998a). Thisauthor de�nes similarity between two distributions as the ratio of the informationshared by the two distributions and the information in every distribution separately.In our 
ase this translates to

sim2(wi, wσ(i)) =
2 ×

∑

hi
H(hi)H

′(hi)log(P (hi))
∑

hi
H(hi)log(P (hi)) +

∑

hi
H ′(hi)log(P (hi))

(7.6)where P (hi) is unigram probability of the hidden word hi, whi
h is independent of
H or H ′. In this similarity measure infrequent hidden words 
arry a relative higherweight then frequent hidden words. This weight is proportional to the information
ontent log(P (hi)) of P (hi).We adapt the original expansion algorithm with these two similarity measures.Although these 
hanges might appear only a slight deviation from the originalmodel dis
ussed by Fürstenau and Lapata (2009) it is potentially an important one,sin
e an a

urate semanti
 similarity measure will greatly in�uen
e the a

ura
yof the alignments, and thus of the a

ura
y of the automati
 expansion.7.3.3 Evaluation of weakly supervised SRLWe perform a number of experiments where we 
ompare the standard superviseddis
riminative model with the di�erent weakly supervised methods proposed inse
tions 7.3.1 and 7.3.2.



SEMANTIC ROLE LABELING 955% 20% 50% 100%Dis
riminative 40.49% 67.23% 74.93% 78.65%HWFeatures 60.29% 72.88% 76.42% 80.98%ClassFeatures 59.51% 66.70% 70.15% 72.62%CosExp 47.05% 53.72% 64.51% 70.52%JSExp 45.40% 53.82% 65.39% 72.66%LinExp 51.84% 57.98% 67.39% 74.66%Table 7.2: Results (in F1-measure) on the CoNLL 2008 test set, 
omparing thestandard supervised 
lassi�er with di�erent weakly supervised 
lassi�ers, usingdi�erent portions of the full training set for training. See main text for details.HWFeatures Add the hidden words as probabilisti
 features.ClassFeatures Add the 
lass from a 
lass-based language model as extra feature.CosExp Expand training set, use 
osine for semanti
 distan
e.JSExp Expand training set, use Jensen-Shannon divergen
e on hidden words.LinExp Expand training set, use Lin's distan
e measure on hidden words.Table 7.2 shows the results of the di�erent supervised and semi-supervised methodson the test set of the CoNLL 2008 shared task. We experimented with di�erentsizes for the training set, ranging from 5% to 100%. When using a subset of thefull training set, we run 10 di�erent experiments with random subsets and averagethe results.We see that the HWFeatures method performs better than the other methodsa
ross all training sizes. Furthermore, these improvements are larger for smallertraining sets, showing that the approa
h 
an be applied su

essfully in a settingwhere only a small number of training examples is available. When 
omparingthe HWFeatures method with the ClusterFeatures method we see that, althoughthe ClusterFeatures method has a similar performan
e for small training sizes,this performan
e drops for larger training sizes. A possible explanation of thisresult is the use of the 
lusters employed in the ClusterFeatures method. Byde�nition the 
lusters merge many words into one 
luster, whi
h might lead togood generalization (more important for small training sizes) but 
an potentiallyhurt pre
ision (more important for larger training sizes).We 
ompare the di�erent methods for automati
 expansion (CosExp, JSExp andLinExp) to the supervised 
lassi�er and see that all three methods have improvedperforman
e for small training sizes, but redu
ed performan
e for larger trainingsizes. An informal inspe
tion showed that for some examples in the training set,



96 USING UNSUPERVISED MODELS FOR INFORMATION EXTRACTIONlittle or no 
orre
t similar o

urren
es were found in the unlabeled text. Thealgorithm however always adds the most similar s o

urren
es to the training setfor every annotated example, also for these examples where little or no similaro

urren
es were found. In these 
ases the automati
 alignment often fails togenerate 
orre
t labels and introdu
es errors in the training set. In the futurewe plan experiments that determine dynami
ally (e.g. based on the similaritymeasure between o

urren
es) for every annotated example how many trainingexamples to add.7.3.4 Related workThe most popular unsupervised models used for information extra
tion are
lustering methods that learn 
lusters of semanti
 and synta
ti
 similar words.These 
lusters are then used as extra features in the information extra
tion task.Tang et al. (2001) uses the 
lusters from the 
lass-based Brown language model(Brown et al., 1992) in senten
e parsing, but do not 
ompare their 
lassi�er to a
lassi�er without these 
lusters. These 
lusters are also used by Koo et al. (2008)in a synta
ti
 dependen
y parser with an error redu
tion of 14.29% 
omparedto a parser without these 
lusters, and by Zhao et al. (2009) in a multilingualdependen
y parser. Miller et al. (2004) use hierar
hi
al word 
lusters (optimizedfor bigram perplexity) in a dis
riminative named entity re
ognizer, a
hieving a25% error redu
tion 
ompared to a 
lassi�er without these 
lusters.We have shown that for WSD and SRL using the LWLM hidden words improvesa

ura
y 
ompared to the 
lusters from a 
lass-based language model, and we 
anthus safely assume that this will also hold for these other information extra
tiontasks.The resear
h 
losest to our work is Li and M
Callum (2005), who use the soft
lusters derived by Gri�ths et al. (2005) in a supervised 
onditional random �eld
lassi�er for part-of-spee
h tagging and Chinese word segmentation, with an 14%error redu
tion 
ompared to a 
lassi�er without these features.7.4 Con
lusionsIn this 
hapter we have dis
ussed a di�erent approa
h to weakly supervisedlearning: feed the stru
tures learned in an unsupervised model into a supervisedmodel trained for a 
ertain information extra
tion task. We have dis
ussed twomethods: use the hidden words or 
lusters as extra features and use these hiddenwords and 
lusters in a similarity measure to automati
ally expand the trainingset.



CONCLUSIONS 97For the se
ond approa
h we have performed a number of experiments where we usea similarity measure based on a 
osine distan
e, or on a distan
e metri
 that usesthe hidden words with the Jensen-Shannon divergen
e or Lin's similarity measure.We saw that these methods only outperformed the supervised 
lassi�er for smalltraining sets, be
ause of the in
orre
t examples introdu
ed by the automati
expansion.Using the hidden words or 
lusters was a better approa
h that resulted ina signi�
ant improvement over the supervised 
lassi�er for both word sensedisambiguation and semanti
 role labeling. This improvement was largest for smalltraining sets, showing that this method does su

essfully redu
e the dependen
yof the supervised model on large training 
orpora. Additionally this method alsooutperformed a method that uses 
lusters from a 
lass-based language model.Be
ause of its simpli
ity and independen
e of the spe
i�
 information extra
tiontask, we expe
t that this method 
an be employed almost e�ortless in other tasks,su
h as named entity re
ognition or part-of-spee
h labeling.





Part IIIAutomati
 annotation ofimages and video

99



100Outline part III : Information extra
tion for weak supervision ofimages and videoIn the previous 
hapters we have dis
ussed various weakly supervised methodsand we have shown that these methods 
an be su

essfully employed to improveinformation extra
tion methods. We have however only 
onsidered labeled andunlabeled textual data, i.e. data in a single medium. We now turn to the 
aseof multimodal weakly supervised learning. In this part we dis
uss methods thatemploy information extra
tion methods to aid the automati
 analysis of imagesand video.In 
hapter 8 we develop the appearan
e model whi
h �nds the entities present inan image by analyzing a text des
ribing this image. This model is subsequentlyused in two appli
ations, to align names in the text with fa
es in the image, andto perform textual image retrieval.Chapter 9 deals with the automati
 annotation of video. We �rst fo
us on theautomati
 annotation of a
tions of a
tors in the video, and apply the previouslydeveloped semanti
 role labeling system to the trans
ripts of a video series. Ina se
ond task we 
ombine information extra
ted from the trans
ript with anautomati
 analysis of the video to dis
over the di�erent s
enes in a video, andto derive the lo
ation for every s
ene.This resear
h is motivated by the observation that frequently, the di�
ulties fa
edby automati
 methods for image analysis are even greater than these fa
ed bynatural language pro
essing methods, be
ause of the large variations in s
ale,lightning 
onditions and relative orientation of entities in images.The work in this part of the thesis is des
ribed in the following arti
les:- Koen Des
ha
ht and Marie-Fran
ine Moens. Text Analysis for Automati
Image Annotation. In Pro
eedings of the 45th Annual Meeting of theAsso
iation for Computational Linguisti
s, Prague, 2007.- Koen Des
ha
ht and Marie-Fran
ine Moens. Finding the Best Pi
ture:Cross-Media Retrieval of Content. In C. Ma
donald, I. Ounis, V. Pla
houras& I. Ruthven (Eds.) Pro
eedings of the 30th European Conferen
e onInformation Retrieval. Le
ture Notes in Computer S
ien
e 4956 (pp. 539-546), Springer, 2008.- Koen Des
ha
ht, Marie-Fran
ine Moens and Wouter Robeyns. Cross-MediaEntity Re
ognition in Nearly Parallel Visual and Textual Do
uments. InPro
eedings of the 8th RIAO 
onferen
e on Large-S
ale Semanti
 A

ess toContent (Text, Image, Video and Sound), USA, 2007.



101- Erik Boiy, Koen Des
ha
ht and Marie-Fran
ine Moens. Learning VisualEntities and their Visual Attributes from Text Corpora. In Pro
eedings ofthe 5th International Workshop on Text-based Information Retrieval, IEEEComputer So
iety Press, 2008.- Koen Des
ha
ht and Marie-Fran
ine Moens. Text Analysis for Automati
Image Annotation, In Pro
eedings of the 19th Belgian-Dut
h Conferen
e onArti�
ial Intelligen
e (Dastani, M. and de Jong, E., eds.), pp. 260-267, TheNetherlands, 2007.





Chapter 8Automati
 annotation ofimagesIn this 
hapter we des
ribe methods for the analysis of texts that des
ribe animage, with the goal of automati
ally 
reating annotations of images. This work ismotivated by fa
t that information extra
tion methods on images fa
e even greaterdi�
ulties than methods on text: entities for example often have dramati
allydi�erent appearan
es in di�erent images, depending on pose, lighting 
onditions,distan
e to the subje
t and other fa
tors.We start by des
ribing the appearan
e model for entities in images (se
tion 8.1)and then extend this model to attributes (se
tion 8.2). In se
tion 8.3 we 
omparethis model to related resear
h and we see in se
tion 8.4 how it 
an be used in twoappli
ations: name and fa
e alignment (se
tion 8.4.1) and image retrieval (se
tion8.4.2). We 
on
lude in se
tion 8.5.8.1 An appearan
e model for entitiesFigure 8.1 shows an example of an image-text pair, where the text des
ribes theentities that are present in the image. In this 
hapter we want to develop anautomati
 method that 
an determine from this des
riptive text that e.g. �HillaryClinton�, �Bill Clinton�, �David Paterson� and �Eliot Spitzer� are entities thatare likely to appear in the image. We limit this analysis to text only, without
onsidering any information present in the images.To solve this task we propose the appearan
e model. This model assigns toevery entity in the text a probability of this entity being present in the image.103



104 AUTOMATIC ANNOTATION OF IMAGESNew York State Sen. Hillary Clinton 
elebratesafter making her nomination a

eptan
e spee
halong with husband and former U.S. PresidentBill Clinton, left, David Paterson, se
ondright, and gubernatorial 
andidate Eliot Spitzer,right, during the New York State Demo
rati
Convention in Bu�alo, N.Y., on Wednesday, May31, 2006. Paterson is running for the New YorkState Lt. Governor's o�
e.Figure 8.1: Example image-text pair.We �rst dete
t all entities (se
tion 8.1.1), and determine for every entity itsvisualness (se
tion 8.1.2) and salien
e (se
tion 8.1.3), whi
h are then 
ombinedin the appearan
e model (se
tion 8.1.4). Finally we evaluate our model in se
tion8.1.5.8.1.1 Entity dete
tionTo dete
t all entities in the text we rely on existing tools for named entityre
ognition and part-of-spee
h tagging.We use an existing named entity re
ognition pa
kage to re
ognize person names inthe text. The OpenNLP pa
kage1 dete
ts noun phrase 
hunks in the senten
es thatrepresent persons, lo
ations, organizations and dates. To improve the re
ognitionof person names, we use a di
tionary of names, whi
h we have extra
ted from theWikipedia2 website. The noun phrase 
o-referents in the texts that are in the formof pronouns (e.g. �he�, �she�) are resolved with the LingPipe3 pa
kage.We use LTPOS (Mikheev, 1997) to perform part-of-spee
h tagging (i.e., dete
tingthe synta
ti
 word 
lass su
h as noun, verb, et
.) and assume that every nounphrase in the text represents an entity.8.1.2 VisualnessAny given text 
ontains a large number of entities. We �rst develop a soft �lterthat assign to every entity in the text a probability that this entity is visual, e.g.that it 
an be per
eived visually. Example of entities that 
an be per
eived visually1http://opennlp.sour
eforge.net/2http://en.wikipedia.org/3http://www.alias-i.
om/lingpipe/



AN APPEARANCE MODEL FOR ENTITIES 105are �
ar� and �house�, while �agreement� or �thought� 
an not be expe
ted to bedire
tly per
eived visually.We �rst determine the meaning of all entities in the text with respe
t to theWordNet database and then employ a distan
e metri
 together with a number ofseed synsets to 
ompute the visualness.Word sense disambiguation After we have performed entity dete
tion, we wantto 
lassify every entity a

ording to the WordNet semanti
 database (Fellbaum,1998). We use the word sense disambiguation (WSD) system des
ribed in 
hapter3. Additionally we assign all person names dete
ted by the named entity re
ognizerto the synset that 
orresponds to a human being.WordNet similarity We determine the visualness for every synset using a methodthat is inspired by Kamps and Marx (2002). Kamps and Marx use a distan
emeasure de�ned on the adje
tives of the WordNet database together with two seedadje
tives to determine the emotive or a�e
tive meaning of any given adje
tive.They 
ompute the relative distan
e of the adje
tive to the seed synsets �good� and�bad� and use this distan
e to de�ne a measure of a�e
tive meaning.We take a similar approa
h to determine the visualness of a given synset. We �rstde�ne a similarity measure between synsets in the WordNet database. Then wesele
t a set of seed synsets, i.e. synsets with a prede�ned visualness, and use thesimilarity of a given synset to the seed synsets to determine the visualness.Distan
e measure The WordNet database de�nes di�erent relations between itssynsets. An important relation for nouns is the hypernym/hyponym relation. Anoun X is a hypernym of a noun Y if Y is a subtype or instan
e of X. For example,�bird� is a hypernym of �penguin� (and �penguin� is a hyponym of �bird�). A synsetin WordNet 
an have one or more hypernyms. This relation organizes the synsetsin a hierar
hi
al tree (Hayes, 1999).The similarity measure de�ned by Lin (1998b) uses the hypernym/hyponymrelation to 
ompute a semanti
 similarity between two WordNet synsets S1 and
S2. It is based on the intuition that entities 
lose in the hypernym tree shouldhave a high similarity. The method �rst �nds the most spe
i�
 (lowest in the tree)synset Sp that is a parent of both S1 and S2. Then it 
omputes the similarity of
S1 and S2 as

sim(S1, S2) =
2logP (Sp)

logP (S1) + logP (S2)



106 AUTOMATIC ANNOTATION OF IMAGESHere the probability P (Si) is the probability of labeling any word in a text withsynset Si or with one of the des
endants of Si in the WordNet hierar
hy. Weestimate these probabilities by 
ounting the number of o

urren
es of a synset inthe Sem
or 
orpus (Fellbaum, 1998; Landes et al., 1998), where all noun 
hunksare labeled with their WordNet synset. The probability P (Si) is 
omputed as
P (Si) =

C(Si)
∑N

n=1 C(Sn)
+
∑K

k=1 P (Sk)where C(Si) is the number of o

urren
es of Si, N is the total number of synsetsin WordNet and K is the number of 
hildren of Si. The WordNet::Similaritypa
kage (Pedersen et al., 2004) implements this distan
e measure and was used bythe authors.Seed synsets We have manually sele
ted 25 seed synsets in WordNet, where wetried to 
over the wide range of topi
s we were likely to en
ounter in the test
orpus. We have set the visualness of these seed synsets to either 1 (visual) or0 (not visual). We determine the visualness of all other synsets using these seedsynsets. A synset that is 
lose to a visual seed synset gets a high visualness andvi
e versa. We 
hoose a linear weighting:
vis(s) =

∑

i

vis(si)
sim(s, si)

C(s)where vis(s) returns a number between 0 and 1 denoting the visualness of a synset
s, si are the seed synsets, sim(s, t) returns a number between 0 and 1 denotingthe similarity between synsets s and t and C(s) is 
onstant given a synset s:

C(s) =
∑

i

sim(s, si)8.1.3 Salien
eNot all entities dis
ussed in a text are equally important. We would like to dis
overwhat entities are in the fo
us of a text and what entities are only mentionedbrie�y, be
ause we presume that more important entities in the text have a largerprobability of appearing in the image than less important entities. We de�nethe salien
e measure, whi
h is a number between 0 and 1 that represents theimportan
e of an entity in a text. We present here a method for 
omputing thiss
ore based on an in depth analysis of the dis
ourse of the text and of the synta
ti
stru
ture of the individual senten
es.



AN APPEARANCE MODEL FOR ENTITIES 1078.1.3.1 Dis
ourse segmentationThe dis
ourse segmentation module, whi
h we developed in earlier resear
h,hierar
hi
ally and sequentially segments the dis
ourse in di�erent topi
s andsubtopi
s resulting in a table of 
ontents of a text (Moens, 2008). The tableshows the main entities and the related subtopi
 entities in a tree-like stru
turethat also indi
ates the segments to whi
h an entity applies. The algorithm dete
tspatterns of themati
 progression in texts and 
an thus re
ognize the main topi
of a text (i.e., about whom or what the text speaks) and the hierar
hi
al andsequential relationships between individual topi
s. A mixture model, taking intoa

ount di�erent dis
ourse features, is trained with the Expe
tation Maximizationalgorithm on an annotated DUC-2003 
orpus. We use the resulting dis
oursesegmentation to de�ne the salien
e of individual entities that are re
ognized astopi
s of a senten
e. We 
ompute for ea
h noun entity er in the dis
ourse itssalien
e (Sal1 ) in the dis
ourse tree, whi
h is proportional with the depth of theentity in the dis
ourse tree -hereby assuming that deeper in this tree more detailedtopi
s of a text are des
ribed- and normalize this value to be between zero andone. When an entity o

urs in di�erent subtrees, its maximum s
ore is 
hosen.8.1.3.2 Re�nement with senten
e parse informationThe segmentation module already determines the main topi
 of a text. Sin
e thesynta
ti
 stru
ture is often indi
ative of the information distribution in a senten
e,we 
an determine the relative importan
e of the other entities in a senten
e byrelying on the relationships between entities as signaled by the parse tree. Whendetermining the salien
e of an entity, we take into a

ount the level of the entitymention in the parse tree (Sal2 ), and the number of 
hildren for the entity in thisstru
ture (Sal3 ), where the normalized s
ore is respe
tively inversely proportionalwith the depth of the parse tree where the entity o

urs, and proportional withthe number of 
hildren.We 
ombine the three salien
e values (Sal1, Sal2 and Sal3 ) by using a linearweighting.
sal(ei) = α1Sal1 + α2Sal2 + α3Sal3We determine 
oe�
ients for these three values on a held-out 
orpus, and set themto α1 = 0.8, α2 = 0.1 and α3 = 0.1.



108 AUTOMATIC ANNOTATION OF IMAGESCleveland Cavaliers' LeBron James (23) shootsbetween Detroit Pistons' Ri
hard Hamilton, left,and Chaun
ey Billups late in the fourth quarterof the Pistons' 84-82 win in a se
ond-roundNBA playo� basketball game Friday, May 19,2006, in Cleveland. The series is tied at threegames ea
h.LeBron James 0.83 Chaun
ey Billups 0.39 Ri
hard Hamilton 0.31Cavaliers 0.17 Cleveland 0.13 Pistons 0.10Figure 8.2: Image-text pair with automati
 extra
ted entities and predi
tedprobabilities.8.1.4 Appearan
e modelThe appearan
e model for entities 
ombines the visualness and salien
e measures.We want to 
al
ulate the probability of the o

urren
e of an entity eim in theimage, given a text t, P (eim|t). We assume that this probability is proportionalwith the degree of visualness and salien
e of eim in t. In our framework, P (eim|t)is 
omputed as the produ
t of the salien
e of the entity eim and its visualnesss
ore, as we assume both s
ores to be 
onditionally independent, given the valueof ei.
app(ei) = sal(ei) × vis(ei)8.1.5 Evaluation of the appearan
e modelIn this se
tion we evaluate our approa
h on a real world 
orpus of near-parallelimage-texts pairs.8.1.5.1 Data setWe use a parallel 
orpus4 
onsisting of 100 images-text pairs that were randomlysele
ted out of a larger 
orpus of 1700 text pairs. The images and their 
aptions4We thank Yves Gu�et from the INRIA resear
h team (Grenoble, Fran
e) for 
olle
ting thisdataset.



AN APPEARANCE MODEL FOR ENTITIES 109are retrieved from the Yahoo! News website5 and are similar to the �Fa
es in thewild� ben
hmark 
orpus (Huang et al., 2007). The 
aptions will in general dis
ussone or more persons in the image, possibly one or more other obje
ts, the lo
ationand the event for whi
h the pi
ture was taken. An example of an image-text pairis given in �g. 8.2. Not all persons or obje
ts who are pi
tured in the images arene
essarily des
ribed in the texts and vi
e versa.Every image-text pair is annotated by one annotator, who has labeled the entities(i.e. persons and other obje
ts) that appear in the text, the entities that appear inthe image and the entities that appear in both. Fig. 8.2 shows an example image-text pair, where "Lebron James" �Chaun
ey Billups� and �Ri
hard Hamilton� arethe only entities that appear both in the text and in the image. On average thetexts 
ontain 15.04 entities, of whi
h 2.58 appear in the image.8.1.5.2 ExperimentsWe test a number of methods on the Yahoo! News 
orpus (table 8.1), using
ombinations of the methods dis
ussed. A �rst method (Ent) uses only the entitydete
tion, a
hieving a pre
ision of 15.62% and re
all of 91.08%. The low pre
isionis 
aused by the fa
t that many entities in the texts are not visible in the image.Although these results indi
ate that this is a very naive baseline, it is in fa
tused quite often (see se
tion 8.3). The se
ond test (Ent+Vis) uses the sele
tedentities together with a stati
 
ut-o� value6 on the visualness measure, a
hieving apre
ision of 48.81% and a re
all of 87.98%. Although this method is already moresu

essful in sele
ting the right entities is still su�ers from the problem that alsoentities in the text that 
ould be present on the image, are not ne
essarily so.The third method (Ent+Sal) uses the entity sele
tion together with a 
ut-o� on thesalien
e measure, whi
h results in 66.03% pre
ision and 54.26% re
all. This showsthat also the salien
e measure alone is not su�
ient to sele
t the 
orre
t entities.Our �nal method (Ent+Vis+Sal) 
ombines entity dete
tion with a stati
 
ut-o�value of the 
ombined visualness and salien
e measures. This method a
hieves
70.56% pre
ision and 67.82% re
all, whi
h is the best result of the evaluatedsystems, both in terms of pre
ision and f1-measure (69.39%).Although the presented methods are quite su

essful in annotating the imageswithout an analysis of the images themselves, it is interesting to see what arethe most important fa
tors for the in
orre
t annotations. We have manuallyevaluated the performan
e of the di�erent te
hniques on this 
orpus. Both namedentity re
ognition and part-of-spee
h tagging were quite a

urate with 93.37%and 98.14% pre
ision and 97.69% and 97.36% re
all respe
tively. The visualness5http://news.yahoo.
om/6All 
ut-o� values in this se
tion were manually sele
ted based on a small set of held-outannotated examples.



110 AUTOMATIC ANNOTATION OF IMAGESpre
ision re
all F1-measureEnt 15.62% 91.08% 26.66%Ent+Vis 48.81% 87.98% 62.78%Ent+Sal 66.03% 54.26% 59.56%Ent+Vis+Sal 70.56% 67.82% 69.39%Table 8.1: Evaluation of di�erent methods for automati
ally annotating entitiesin images, using entity re
ognition (Ent), the visualness (Vis) and salien
e (Sal)measures, and 
ombinations hereof.�Afri
an violets (Saintpaulia ionantha) are small, �oweringhouseplants or greenhouse plants belonging to the Gesneria
eaefamily. They are perhaps the most popular and most widely grownhouseplant. Their thi
k, fuzzy leaves and abundant blooms in softtones of violet, purple, pink, and white make them very attra
tive.Numerous varieties and hybrids are available. Afri
an violets growbest in indire
t sunlight.�Figure 8.3: Example se
tion of the plants 
orpus.measure (with stati
 
ut-o�) has an a

ura
y of 79.56%, where the errors aremainly 
aused by in
orre
t word sense disambiguation (63.10%) and in a lesserextent by the distan
e measure (36.90%). We did not evaluate the salien
e measure,sin
e it is not trivial to exa
tly pin-point the most important entities in a text. Foran evaluation of the dis
ourse segmentation module we refer to (Moens, 2008).8.2 A 
orpus based visualness measureThe work des
ribed in this se
tion is joint work with Erik Boiy and Marie-Fran
ine Moens.We extend the visualness measure de�ned in the previous se
tion. We make twoextensions, �rst we perform a study of te
hniques to 
ompute this visualnessusing 
orpus based asso
iation te
hniques. Se
ondly we 
ompute the visualnessof entities and attributes, where attributes are usually expressed by adje
tives,su
h as �white�, �small�, and �wooden�. We �rst dis
uss 
orpus based asso
iationte
hniques (se
tion 8.2.1) and an extension of the previously de�ned WordNetsimilarity for adje
tives (se
tion 8.2.2). These two te
hniques are then 
ombined(se
tion 8.2.3) and evaluated (se
tion 8.2.4).



A CORPUS BASED VISUALNESS MEASURE 111�Rebirth refers to a pro
ess whereby beings go through a su

ession oflifetimes as one of many possible forms of sentient life, ea
h running from
on
eption to death. It is important to note, however, that Buddhismreje
ts 
on
epts of a permanent self or an un
hanging, eternal soul, as itis 
alled in Christianity or Hinduism. [...℄�Figure 8.4: Example se
tion of the religion 
orpus.8.2.1 Corpus-based asso
iation te
hniquesAsso
ation te
hniques provide methods to de
ide whether two observations o

urmore frequently together then would be expe
ted due to 
han
e. Popular measuresare the 
hi-square metri
 and the likelihood ratio (Dunning, 1993). Severalresear
hers have used these te
hniques to �nd word 
ollo
ations (e.g. �the red
ross�, �the white house�) (Dunning, 1993; Smadja, 1994), for automati
 lexi
on
onstru
tion (Roark and Charniak, 1998) or for 
lassi�
ation of words along a
ertain dimension (Turney, 2002).We have downloaded a 
olle
tion of des
riptions of the appearan
es of �owers andplants, whi
h 
an be 
onsidered to 
ontain mostly visual entities and attributes (plants 
orpus, �gure 8.3) and all arti
les in the English wikipedia on religion, whi
h
an be 
onsidered to 
ontain mostly non-visual entities (religion 
orpus, �gure 8.4).We then use the χ2-test (Cherno� and Lehmann, 1954) to de
ide whether a wordis should be 
onsidered visual or not. More spe
i�
ally we 
ompute the χ2 valueand 
onsider all words (both nouns and adje
tives) above a 
ertain threshold tobe visual.8.2.2 WordNet similarity for adje
tivesPreviously we have used WordNet to 
ompute the visualness measure for entities.For adje
tives we use a similar approa
h but have to use a di�erent distan
emeasure sin
e WordNet does not de�ne a hypernym/hyponym relation betweenadje
tives. In stead we use the similarity measure of Lesk (1986), where thesimilarity between two synsets is de�ned as the overlap between the words inthe textual des
riptions of these synonyms. As for the entities we pi
k 25 seedadje
tives and manually set their visualness to 0 or 1.8.2.3 Combining asso
iation te
hniques and WordNet distan
eThe 
orpus based asso
iation metri
 gives a list of adje
tives and nouns that areranked a

ording to χ2-value, where words that have are higher ranked 
an be



112 AUTOMATIC ANNOTATION OF IMAGES�These small s
ulptures depi
t two identi
al human �gures. Thewooden bodies are weathered brown and the hair is faded blue.Both s
ulptures have a round base about one in
h high. The feetare large and �at, with grooves 
ut into the front to distinguishtoes. The legs are short [...℄�Figure 8.5: Example of the art 
orpus.expe
ted to be more visual. We use this fa
t to automati
ally sele
t the seedsynsets used for the WordNet similarity measure. For both nouns and adje
tiveswe sele
t the 13 highest (e.g. with large, positive χ2 value, thus having a positive
orrelation) and 12 lowest ranked synsets (e.g. with low, negative χ2 value,thus having a negative 
orrelation) and set their visualness respe
tively to 1 and
0. The seeds are thus 
hosen automati
ally, making the visualness measure anunsupervised metri
.8.2.4 Evaluation of 
orpus based visualnessWe evaluate the proposed te
hniques on a third 
orpus, that 
ontains a mix ofvisual and non-visual entities and attributes. The 
orpus 
onsists of a 
olle
tionof des
riptions of works of art together with an elaborate history of the obje
t andthe artist, and will hen
eforth be known as the art 
orpus (�gure 8.5). A 
olle
tionof these des
riptions are manually annotated where every attribute and entity islabeled as visual or non-visual.For every te
hnique we manually set a stati
 
ut-o� value on a small number ofheld-out des
riptions. Table 8.2 shows the results for the di�erent methods. We�rst see that the 
orpus based method performs mu
h better for attributes thanfor entities, whi
h is mainly 
aused by a low re
all on the entities. We hypothesizethat this 
an be attributed to the fa
t that attributes are more generi
 and 
anthus more easily be transferred to a di�erent 
orpus. A se
ond observation that
an be made from table 8.2 is that the WordNet based method outperforms the
orpus based method for entities but performs worse for attributes. Finally wesee that the automati
 sele
tion of seed sets improves the results of the WordNetbased method.



RELATED RESEARCH 113pre
ision re
all F1-measureattribs ents attribs ents attribs ents
orpus 88.26% 81.71% 80.15% 50.95% 84.01% 62.76%wordnet 81.13% 82.02% 50.15% 62.02% 61.98% 70.63%
ombination 87.80% 82.67% 53.25% 66.22% 66.30% 73.54%Table 8.2: Evaluation of di�erent methods for automati
ally annotating entities(ents) and attributes (attribs) in images, using asso
iation te
hniques on(
orpus), WordNet similarity (wordnet) and the 
ombination of these te
hniques(
ombination).8.3 Related Resear
hIn re
ent years many resear
hers have worked on 
ombining information found inimages and asso
iated texts. We limit our review to resear
h that uses asso
iatednatural language texts su
h as 
aptions or trans
ripts, ignoring approa
hes that usemanually annotated keywords, sin
e we are interested in methods to automati
allysele
t words that des
ribe the image.Named entity re
ognition is used by resear
hers interested in 
ombining namesin texts with fa
es in images. Most of these resear
hers assume that all personsare equally likely to appear in the image (Yang et al., 2004; Ozkan and Duygulu,2006; Guillaumin et al., 2008). Other resear
hers a
knowledge that this 
an beimproved by having a measure that 
aptures how likely people to appear in theimage. Yang et al. (2005) sele
t only persons that perform a monologue spee
hsin
e these are more likely to appear in the video, while Satoh et al. (1999) use arudimentary approa
h to dis
ourse analysis that takes into a

ount the position ofthe person in the trans
ript and the verbs that 
o-o

ur with this person, wherea small manual sele
tion of verbs is given a high s
ore and all other verbs a lowers
ore. Regretfully these two publi
ations do not evaluate their approa
hes. Berget al. (2004) 
onstru
t a more elaborate 
ontext model to determine whi
h personsappear in the image. This model in
ludes the part-of-spee
h tags on both sides ofthe person name, the distan
es to the nearest spe
ial token (�,�, �.�, �(�, �)�, �(L)�,�(R)� or �(C)�), and the lo
ation of the name in the 
aption. The parametersof this model are then learned in an unsupervised manner, whi
h results in a
lassi�er that has an a

ura
y of 84%, where a baseline approa
h that assumesthat all persons appear in the image a
hieves an a

ura
y of 67%. Contrary to ourresear
h this method takes into a

ount highly 
orpus spe
i�
 
ontext 
ues anddoes not 
onsider obje
ts other then persons. Furthermore errors in the namedentity re
ognition system are not taken into a

ount in the evaluation, althoughthe previously reported a

ura
y of the employed re
ognizer was between 80% and
90% (Cunningham et al., 2002).



114 AUTOMATIC ANNOTATION OF IMAGESOther resear
hers do not limit the text analysis to person names, although alsohere typi
ally word sele
tion is 
onsidered a prepro
essing step and is given littleattention. Jain et al. (2007) for example do not perform word sele
tion, Mori et al.(2000) sele
t nouns and adje
tives when they o

ur above a 
ertain frequen
y inthe entire 
orpus, Westerveld (2000) lemmatises all words in the 
aptions anduses words that o

ur at least in two di�erent do
uments, Amir et al. (2005)perform stop-word removal and Porter stemming and assign tf ∗ idf weights to theremaining words and Westerveld et al. (2005) use a (retrieval) language modellingapproa
h that interpolates a ML model for the text asso
iated with the shot, withone asso
iated to the s
ene, the video and the 
olle
tion. None of these publi
ationsevaluate word sele
tion separately.Following our publi
ations (Des
ha
ht and Moens, 2007; Des
ha
ht et al., 2007)we have seen more resear
h on this task. Kliegr et al. (2008) perform entitydete
tion in a similar manner as presented here, however a more advan
ed methodis employed to map person names to WordNet. Where we mapped all personnames to the synset representing a �human being�, the authors perform a more �ne-grained mapping where for example �David Be
kham� is mapped to �footballer�.This is a

omplished by automati
ally learning hypernym relationships from alarge 
orpus using Hearst-style patterns (Hearst, 1992), with an a

ura
y of 85%.The synsets are then manually 
lassi�ed a

ording to visualness. Leong andMihal
ea (2009) have adapted our work to automati
ally annotate all elementsof an image, and not only entities. They learn a visualness measure from a large
orpus and modify the salien
e measure to in
lude two other 
lues: semanti

loud, whi
h 
aptures whi
h words are more �
entral� to a 
ertain topi
 andlexi
al distan
e, whi
h is the distan
e of words to the image. They a
hieved an
F1-measure of 54.21% on a 
orpus of 180 images and 
orresponding web pages,
ompared to a tf ∗ idf baseline of 41.48%. Xia et al. (2009) aim at annotatingimages with full senten
es. They use the visualness measure together with a latentsemanti
 analysis of words and features extra
ted from the image to generate aset of 
andidate keywords for a given image. From a large 
orpus, all senten
esthat 
ontain at least two of these keywords are ranked a

ording to frequen
y onthe world wide web. The a

ura
y of their method was not evaluated.8.4 Appli
ations of the appearan
e modelIn this se
tion we see two appli
ations of the appearan
e model. We will see how it
an be used to align names and fa
es (se
tion 8.4.1) and to improve image retrieval(se
tion 8.4.2).



APPLICATIONS OF THE APPEARANCE MODEL 1158.4.1 Alignment of names and fa
esThe work des
ribed in this se
tion was performed by Phi The Pham, Marie-Fran
ineMoens and Tinne Tuytelaars.One of the goals of the appearan
e model is the 
reation of annotations for imagesthat 
an be used to train an image 
lassi�er or dete
tor. In this se
tion we dis
usswork performed in (Pham et al., 2010) that learns from a 
orpus of images withasso
iated 
aptions, a probabilisti
 alignment of names in the 
aptions with fa
esin the image.The �Labeled Fa
es in the Wild� dataset (Huang et al., 2007) is similar to thedataset dis
ussed earlier and 
ontains 11820 images with their 
aptions that havebeen downloaded from a Yahoo! news. Typi
ally an image 
ontains multiplefa
es, the 
aption 
ontains multiple names, and not every fa
e in the image has a
orresponding name in the 
aption and vi
e versa. Pham et al. (2010) developedan iterative EM pro
edure to align every fa
e with it's 
orre
t name. This is a non-trivial task sin
e fa
es 
ontain a lot of variation due to fa
ial expressions, pose andlighting 
onditions, and also person names are used in di�erent ways (e.g. �GeorgeW. Bush�, �President Bush� and �George Bush�).First all names in the 
aptions are dete
ted (using the previously des
ribed namedentity re
ognizer) and 
lustered based on automati
ally dete
ted 
oreferen
e 
hains.The fa
es are automati
ally dete
ted using a fa
e dete
tor and 
lustered based ona 
osine metri
 on the parameters of a 3D morphable fa
e model. An initialalignment of names and fa
es is learned from 
o-o

urren
e of the fa
e 
lusterswith the name 
lusters in the dataset. This estimate is iteratively updated usingan EM-algorithm.Although the visualness measure is not used (sin
e persons re
eive a visualnesss
ore of 1), the experiments performed show that approa
hes that employ thesalien
e measure 
onsistently outperform approa
hes that assume that all personsin the 
aption are equally likely to appear in the image. The best system testeduses the salien
e measure for the names and the namedness for the fa
es, whi
hestimates the probability that a fa
e will be des
ribed in the text. This systema
hieved an F1-measure of 72.23% on a large test set of 10977 image-text pairs.8.4.2 Textual retrieval of imagesIn this se
tion we dis
uss an appli
ation of the appearan
e model: the retrieval ofimages from the world wide web. Our goal is to �nd the best images of a givenentity (or entities) in a 
olle
tion of pi
tures that have asso
iated texts in the formof des
riptive senten
es, where every pi
ture 
an depi
t possibly multiple personsor obje
ts. Although most resear
h on image retrieval is on an automati
 analysis



116 AUTOMATIC ANNOTATION OF IMAGESof the image (Datta et al., 2008), 
ommer
ial sear
h engines today still use thetext surrounding the image as a major 
lue to the image's 
ontent. Sin
e we havefound that the appearan
e model o�ers a reasonable a

urate representation ofthe image 
ontent, it is interesting to see to what extent this model 
an be usedfor the retrieval of images.In se
tion 8.4.2.1 we integrate the appearan
e model in a retrieval model, whi
hwe evaluate in se
tion 8.4.2.2.8.4.2.1 Probabilisti
 
ross-media retrieval modelStatisti
al language modeling has be
ome a su

essful retrieval approa
h (Croftand La�erty, 2003). A textual do
ument is viewed as a model and a textualquery as a sequen
e of words randomly sampled from that model. Let the querybe 
omposed of one or more query word qi, whi
h are proper names or nounsrepresenting a person or obje
t. The language model for retrieval then 
omputesthe probability that the query [q1...qm] is generated by image Ij

P (q1, ..., qm|Ij) =
m
∏

i=1

((1 − λ)P (qi|Ij) + λP (qi|C)) (8.1)where C represents the 
olle
tion of do
uments and λ is a smoothing fa
tor between
0 and 1. The probability P (qi|C) is 
alled the 
orpus model and assigns a non-zeroprobability to every word in the 
orpus proportional to the relative frequen
y ofthat term. The probability P (qi|Ij) is the probability of the image Ij generatingthe query term qi. We estimate this probability from the text Tj asso
iated tothe image (e.g. the 
aptions), and 
onsider a number of methods. A �rst method(bag-of-words, BOW) estimates this probability as

PBOW (qi|Ij) ∼ n(qi)where n(qi) is the number of o

urren
es of word qj in Tj and k ranges over allwords in Tj . A di�erent method takes into a

ount whether a word expresses anentity (or is part of a multi-word expression of an entity).
P (qi|Ij) ∼

{

n(qi) ∗ w(ei) if qi expresses an entity ei

0 otherwiseHere w(ei) is a weight assigned to the entity ei expressed by the word qi. A �rstmodel (BOE) assumes that all entities are weighted equally, i.e. w(ei) = 1. Wethen de�ne a number of models that set the weight respe
tively to the visualness(VIS), to the salien
e (SAL) or to the appearan
e s
ore of that entity (APP). We



APPLICATIONS OF THE APPEARANCE MODEL 117Donald Trump
...Bill Clinton

...Figure 8.6: Ground truth ranking (left to right, top to bottom) for two examplequeries. Images are ranked higher if they 
ontain fewer entities and if the queriedentity is more prominent in the image. Images in the dataset are all approximatelythe same size and this fa
tor is not taken into a

ount for the ranking.have adapted the Lemur toolkit7 to in
lude these retrieval models, using a λ equalto 0.1.8.4.2.2 Evaluation of the appearan
e retrieval modelDataset Be
ause of the la
k of a standard dataset that �ts our tasks andhypotheses, we annotated our own ground truth 
orpus. We randomly sele
t 700image-text pairs from the Yahoo! news 
orpus dis
ussed in se
tion 8.1.5.1. In thissele
tion, many images pi
ture only a single person or obje
t. This makes retrievaleasy, sin
e these images should be ranked at the top, and we refer to this datasetas the EASYSET. From this set we sele
t a subset of pi
tures where three or morepersons or obje
ts are shown, whi
h varying degree of prominen
e in the image.We 
all this dataset that 
omprises 380 image-text pairs the DIFFICULTSET.Tests on the latter set allows us to better understand the behavior of our di�erentindexing methods when many persons or obje
ts with varying degree of prominen
eare shown in the photographs.We have randomly generated a number of queries as follows: assuming that thequeries re�e
t the 
orpus used for retrieval, we sele
t 79 images from this 
orpus,7http://www.lemurproje
t.org/



118 AUTOMATIC ANNOTATION OF IMAGESBOW BOE VIS SAL APEASYSET 58.12% 62.46% 55.62% 56.25% 59.28%DIFFICULTSET 70.48% 73.46% 71.16% 69.54% 71.70%Table 8.3: Results in terms of mean average pre
ision for the ranking models basedon the di�erent text representations for the EASYSET and DIFFICULTSET.and for every sele
ted image 
reate a query by 
on
atenating all entities in thisimage. In this way we obtained 53 queries that 
ontain one name of a person orobje
t, and 26 queries with two entities (23 queries with two person names and 3queries with a person and obje
t name). For every query we ranked all images inthe 
orpus that 
ontained these entities a

ording to the prominen
e of the entitiesin the images. Rankings for two examples queries 
an be see in �gure 8.6.Experiments For every query we rank all do
uments in the 
olle
tion using themethods de�ned above, and 
ompare the automati
 rankings with the manualrankings using the mean average pre
ision metri
 (table 8.3).First, we see that the appearan
e measure (AP) improves the retrieval model
ompared to the baseline (BOW) method. This measure determines approximatelyhow many entities in a given text are likely to appear in the image, and thus to
reate a more �ne-grained ranking (sin
e images with a small number of entities arepreferred above images with a large number of entities). However, disappointinglythis method, and all other methods are outperformed by the bag-of-entities (BOE)method, showing that the prominen
e is su�
iently 
aptured by the maximumlikelihood estimation of the term o

urren
e in the text. This is 
aused by astrong 
orrelation between the length of a 
aption and the number of entitiesshown in the 
orresponding image. Another important fa
tor is that the queriesby de�nition only 
ontain entities that 
an be per
eived on the images, thusmaking an automati
 analysis of the visualness of entities super�uous. Also theo

asional mis
lassi�
ation of entities by the appearan
e model (see table 8.1.5),redu
es the a

ura
y of the automati
 ranking. These unexpe
ted results showthat information retrieval has di�erent requirements then information extra
tion,and that an improved method for the latter does not ne
essary improve the former.8.4.2.3 Related workImage retrieval is a well studied problem with a large body of resear
h, we referto Smeulders et al. (2000) and Datta et al. (2008) for extensive overviews. Mostresear
h however fo
uses on 
ontent-based image retrieval, i.e. on methods that



CONCLUSION 119perform an automati
 analysis of the images while only few resear
h of usingasso
iated natural language texts has been performed.Smeaton and Quigley (1996) and Flank et al. (1995) develop retrieval modelsfor image 
aptions based on respe
tively a WordNet distan
e or on �nite statema
hines representing the synta
ti
 stru
ture of a senten
e. These approa
hesshould however be 
onsidered generi
 information retrieval models sin
e they arenot designed spe
i�
ally for image retrieval. The WebSEEk sear
h engine Changet al. (1997) uses a manual 
lassi�
ation of terms in asso
iated web-pages asvisual or non-visual. The visual terms are further manually mapped into di�erent
ategories. The performan
e of this method is not reported.The ImageClef 2009 shared task on image retrieval (Paramita et al., 2009)
ompares a number of systems that perform image retrieval on a 
orpus of almost
500.000 images with asso
iated 
aptions, similar to the 
orpus employed here.Given a query 
onsisting of textual keywords and an example image, the systemsperformed a ranking of all image-text pairs in the system. All the parti
ipatingsystems used standard retrieval models to 
ompare the key words with the 
aptions,whi
h suggests that for this type of data a more elaborate analysis of the 
aptionsdoes not improve retrieval performan
e.The experiments performed by Xia et al. (2009) suggest that an analysis oflanguage is ne
essary however when the texts asso
iated with the images arelonger and 
ontain more words that do not des
ribe the image. Xia et al. (2009)performed experiments where, for a given textual query, a ranking was 
reated ofimages based on text extra
ted from the 
ontaining web page. They found thata retrieval model that uses the visualness measure outperforms a tf ∗ idf basedlanguage model by 15% to 20%.8.5 Con
lusionIn this 
hapter we have introdu
ed the appearan
e model, 
onsisting of an analysisof the text 
ombined with external knowledge. We have designed a method to
apture the salien
e of the entities, based on analysis of the dis
ourse of the textand of the synta
ti
 stru
ture of the senten
es. We have 
ombined this with anew model of the visualness of the entities, that employs a distan
e metri
 de�nedon WordNet together with a small number of seed synsets. We have shown thatthis method 
an predi
t whi
h entities and attributes are present in an image,without performing an analysis of the image itself. We have then des
ribed twoappli
ations of this model: the alignment of names and fa
es and image retrieval.It was shown in these experiments that the salien
e model helps to a

uratelyalign names and fa
es by indi
ating whi
h persons are more likely to appear inthe image. We then saw that, although existing retrieval models are su�
ient for



120 AUTOMATIC ANNOTATION OF IMAGESshort 
aptions, the visualness model did help for text pages that 
ontained longertexts with more entities not visible in the image.



Chapter 9Automati
 annotation ofvideoIn the previous 
hapter we have dis
ussed the di�
ulties fa
ed by automati
methods for the analysis of images, and how automati
ally generated annotationsfrom asso
iated texts 
an improve these methods by providing a weak labeling.The analysis of video data however provides even greater di�
ulties for automati
methods. In this 
hapter we dis
uss methods that automati
ally generateannotations for video data using asso
iated texts or trans
ripts. We fo
us ontwo types of annotations: visual a
tions and their semanti
 roles (se
tion 9.1)and lo
ations of s
enes (se
tion 9.2). These annotations 
an then be used tohelp methods that perform an automati
 analysis of the video. We 
on
lude this
hapter in se
tion 9.3.9.1 Visual a
tion annotationIn this se
tion we investigate methods for the automati
 annotation of a
tionsin video. To this end we apply the previously developed semanti
 role labelingsystem to semanti
 roles of visual verbs. We introdu
e this task in se
tion 9.1.1and des
ribe the role de�nitions in se
tion 9.1.2. We evaluate the dataset usedin this appli
ation in se
tion 9.1.3 and evaluate it in se
tion 9.1.4. Finally wedes
ribe its use in automati
 annotation in se
tion 9.1.5.
121



122 AUTOMATIC ANNOTATION OF VIDEOMovement A person moving voluntarily from one position to another (�Bu�y walks in theroom�).Obje
t manipulation A person manipulating or moving an obje
t (�.. Bu�y opening therefrigerator�).Body position A verb des
ribing the position or pose of the body of a person (�.. Bu�y leansforward..�).State A verb that des
ribing the stationary state of an obje
t or person, di�erent from the bodyposition (�... Dawn is 
hained to the wall.�).Express emotion A person expressing some emotion (�Dawn shrugs in embarrassment�).Fighting A
tions performed by a person in a �ght (�... Harmony ba
khands Anya�).Camera a
tion The 
amera zooming in or out or moving with respe
t to the s
ene (�The
amera pans a
ross a bedroom�).Visual Any visual verb that does not belong to one of the above 
ategories (�.. Bu�y talkingto Giles�).Table 9.1: Semanti
 frames for automati
 video annotation.9.1.1 Introdu
tionA
tion dete
tion and 
lassi�
ation in video is a hard task that has only re
entlybeen approa
hed outside laboratory 
onditions, and is typi
ally still limitedto a small number of a
tions (Laptev et al., 2008). Furthermore the manualsegmentation and labeling of a
tions in video is a labour-intensive and error-pronetask. Following our work on automati
 image annotation in the previous 
hapter,we would like to develop methods for the automati
 annotation of a
tions andtheir arguments (i.e. semanti
 roles) in videos. We are hereby only interested invisual a
tions and arguments, i.e. a
tions and arguments that 
an be per
eivedin a single frame or in a sequen
e of video frames. This work will show that we
an easily adapt our semanti
 role 
lassi�er to di�erent sets of semanti
 roles andframes.9.1.2 Semanti
 rolesThe PropBank semanti
 roles des
ribed in se
tion 4 de�ne a set of semanti
 rolesand a set of senses for every verb separately. This de�nition is however not veryuseful for automati
 image annotation sin
e typi
ally it is required to generalizea
ross di�erent verbs. We thus de�ne a new set of semanti
 frames that aremotivated by the requirements of automati
 image analysis: all verbs labeled withan identi
al frame should have a more or less similar visual appearan
e in the



VISUAL ACTION ANNOTATION 123Agent The person or obje
t performing the a
tion (�Bu�y walks in the room�).Causative agent The person or obje
t that for
e another person or obje
t into the a
tion(�Bu�y pushes her ba
k�).Patient The person or obje
t for
ed into the a
tion (�Bu�y pushes her ba
k�).From position The initial position before movement (�Bu�y pi
ks up a banana from a bowlof fruit�).To position The �nal position after movement (�she 
rashes to the �oor�).Emotion The emotion that is expressed (�Bu�y's fa
e looks very pea
eful�).Negation The word indi
ating negation of a 
ertain a
tion (�Willow does not noti
e herexpression�).Table 9.2: Semanti
 roles for automati
 video annotation.video, and vi
e versa. Furthermore the de�nitions should re�e
t the a
tions thato

ur frequently in the dataset used and should in
lude a
tions of the 
amera (e.g.�zoom�), whi
h is potentially useful for visual a
tion dete
tion methods. In dialogwith resear
hers more experien
ed in video analysis and taking into a

ount thedataset, we have 
reated a new set of frames (listed in table 9.1) and semanti
roles (table 9.2).9.1.3 DatasetWe apply the proposed semanti
 frames and roles to the trans
ripts of a populara
tion series, Bu�y, the Vampire Slayer. This Ameri
an TV series stars Bu�ySummers and her friends as they �ght vampires and other demons. It o�ersan interesting testbed for our automati
 annotation te
hniques: be
ause of itslarge popularity, fans have 
reated trans
ripts for all episodes that o�er detaileddes
riptions of the video and the dialog. These trans
ripts 
ontain informationon the a
tions of the 
hara
ters, their emotions and of the lo
ations of the s
enes.This information is however all embedded in running text and need to be extra
tedwith information extra
tion te
hniques. Also the video o�ers a realisti
 testbedfor video analysis be
ause of the 
hallenging lightning 
onditions, frequent motionblurring and variations in pose and 
amera position.A human annotator has manually annotated all verbs and their semanti
 roles inepisodes 1 to 9 of the �fth season, totaling 4340 frames with 12754 roles. Theseannotations have been 
he
ked for in
onsisten
ies by a se
ond annotator.



124 AUTOMATIC ANNOTATION OF VIDEOmodel %P %R %F1generative 70.36 63.61 66.79dis
riminative 76.77 74.75 75.85Table 9.3: Results for semanti
 role dete
tion for visual verbs.
Shot of Buffy opening 

the refrigerator and 

taking out a carton of 

milk. Buffy sniffs the 

milk and puts it on 

the counter. In the 

background we see 

Dawn opening a 

cabinet to get out a 

box of cereal. Buffy 

turns away.

Obj. mani.  opening 

   Agent      Buffy

   Patient     the refrigerator 

Obj. man.   taking out

    Agent     Buffy

    Patient   a carton of milk 

Obj. man.   opening

   Agent      Dawn

   Patient    a cabinet

Movement  turns away

   Agent      BuffyFigure 9.1: SRL result (middle 
olumn) for an example s
ene, showing thetrans
ript (left 
olumn) and video frames (right 
olumn).9.1.4 EvaluationThe trans
ripts were prepro
essed by removing all HTML formatting. We havealso removed all dialog, sin
e this 
ontains very little information on the a
tions ofthe 
hara
ters. The des
riptive text was then split in senten
es that were part-of-spee
h tagged (Mikheev, 1997) and parsed (Charniak, 1997). We 
reated featuresfrom these tags (see se
tion 4.3.1), trained our generative and dis
riminativesemanti
 role 
lassi�ers (see se
tion 4) on 8 episodes and tested on the remainingepisode. Table 9.3 shows that also here the dis
riminative model outperforms thegenerative model, 
on�rming our results in the previous 
hapters. We also showsome examples of automati
ally dete
ted semanti
 frames in �gure 9.1. We seehow they a

urately des
ribe the a
tions in the video.We would like to emphasis again that the SLR systems and features applied hereare exa
tly the same as used on the PropBank dataset, showing that our approa
his very �exible and 
an be applied rapidly on new datasets.9.1.5 Automati
 image annotationWe have des
ribed semanti
 role dete
tion in text for visual a
tions. Given a textdes
ribing an image or video, we 
an use the developed system to automati
allygenerate annotations that 
an be used in image analysis. Jie et al. (2009) have used
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essfully dete
t the a
tors of a
tion verbs in texts des
ribing newsimages. From these automati
 annotations they learn asso
iations between namesand visual fa
e des
riptions and between a
tion verbs and visual pose estimates.The learned asso
iations using the automati
ally dete
ted a
tors are appr. 75%
orre
t for both name-fa
e and a
tion-pose asso
iations, whi
h 
ompares favorablyto asso
iations learned with manually annotated a
tors, resulting in appr. 80%a

ura
y for name-fa
e and appr. 83% a

ura
y for a
tion-pose asso
iations.In the future we would like to use the annotations generated by this SRL 
lassi�erfor analyzing other a
tions, su
h as emotions or movements.9.2 S
ene lo
ation annotationThe work des
ribed in this se
tion is joint work with Chris Engels, Jan Hendrik Be
ker,Tinne Tuytelaars, Marie-Fran
ine Moens and Lu
 Van GoolIn this se
tion we 
onsider the problem of annotating s
enes in a video withinformation extra
ted from an asso
iated text. We introdu
e this problem inse
tion 9.2.1 and des
ribe how we use a multimodal approa
h to s
ene segmentation(se
tion 9.2.2) and s
ene annotation (se
tion 9.2.3). We evaluate our approa
h inse
tion 9.2.4.9.2.1 Introdu
tionWe 
onsider a video (e.g. a motion pi
ture or soap series) that has an asso
iatedtext (e.g. a trans
ript) that des
ribes the 
ontent of the video. From this text, weaim to extra
t the lo
ation of a parti
ular s
ene in the video. These annotations
ould be presented to an end-user, used for a textual sear
h in a video-ar
hive, oras a weak annotation for visual s
ene 
lassi�ers. An important di�
ulty is thatthe number of lo
ations is not known beforehand and that many lo
ations willonly o

ur in a single video. We thus need a method that is able to dynami
allydetermine the number of and textual des
riptions for lo
ations in a new video.We hereby rely on information extra
tion methods that extra
t the lo
ationdes
riptions from the asso
iated texts. Furthermore we develop a method topropagate lo
ation annotations from one s
ene to s
enes that are visually similar.In this work we use trans
ripts for an a
tion series that is 
reated by fans (seese
tion 9.2.4). These trans
ripts 
ontain des
riptive text together with the dialog.Figure 9.2 gives an overview of our approa
h. We begin by roughly aligning thetrans
ript to the video using subtitles with approximate timing information. Wethen split the video into s
enes using a text 
lassi�er and shot 
ut dete
tor. Forevery s
ene we extra
t the lo
ation phrases and use these to train a latent Diri
hlet
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Figure 9.2: Overview of our approa
hallo
ation topi
 model. The �nal annotations are then 
hosen as the phrase thatis most likely given the topi
 distribution, reweighted by visual similarity.9.2.2 S
ene Segmentation and AlignmentWe de�ne a s
ene as a 
onse
utive sequen
e of shots that are set in the samelo
ation. S
enes are used as the basi
 units that are annotated in our work. Tosegment the video into s
enes we use a multimodal approa
h, 
ombining a shot
ut dete
tor with a text 
lassi�er.9.2.2.1 Coarse AlignmentWe �rst 
reate an approximate alignment of video and text. The trans
riptsused here do not 
ontain any timing information. To obtain approximate timinginformation, we align the dialog in the trans
ript with the subtitles extra
tedfrom the video, using the time-warping approa
h des
ribed by Everingham et al.
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h re
ognition for the same purpose). Thetiming information from the subtitles 
an thus be transferred to the dialog in thetrans
ripts, whi
h also gives an approximate timing of the des
riptions, sin
e theseare interwoven. This timing is however only approximate, and be
omes worse ins
enes with limited spee
h. We further re�ne this alignment in se
tion 9.2.2.4.9.2.2.2 Learning s
ene 
uts in the textThe des
riptive part of the trans
ripts often 
ontains strong 
ues for the start ofnew s
enes, e.g. �Fade in on a bea
h, daytime.�. The dialog part does not 
ontainsthese 
lues, and we thus dis
ard the spoken lines. We learn a senten
e 
lassi�erthat 
lassi�es every senten
e as des
ribing a transition from one s
ene to another(e.g. �Cut to the kit
hen�).We prepro
ess the text by dividing the textual des
riptions into senten
es, tokenizethe senten
es into words and perform part-of-spee
h tagging (using the LTPOStagger (Mikheev, 1997)). We then extra
t the following featuresUnigram Every word token in the senten
e (e.g. �bu�y�).Bigram Every 
onse
utive sequen
e of 2 tokens in the senten
e (e.g. �bu�y_running�).Trigram Every 
onse
utive sequen
e of 3 tokens in the senten
e (e.g. �bu�y_running_through�).POS Part-of-spee
h tags of all words in the senten
e (e.g. �VB�, �NP�).POS+token Part-of-spee
h tag 
on
atenated with the word token (e.g. �NNP_bu�y�).Position The position of the senten
e in the text, given by the 
hara
ter pointer.This position is binned in 20 intervals of equal width.We perform experiments with a generative and dis
riminative 
lassi�er, and �ndthe optimal 
ombination of features for every 
lassi�er. We use the 
lassi�er to
ompute for every senten
e w = {w1, . . . , wn} of n words w a probability P
ut(w)for the o

urren
e of a s
ene 
ut in this senten
e.9.2.2.3 Dete
ting visual shot 
utsWe lo
alize our s
ene 
uts by dete
ting an asso
iated shot 
ut in the video. Shotboundary dete
tion is fairly well-established, see e.g. Yuan et al. (2007) for a
omprehensive review. Our implementation uses a sliding window over 
olorhistograms to 
ompute a dissimilarity energy Ecut based on χ2-distan
e, followedby lo
al non-maximum suppression and thresholding.
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ene 
utsAs mentioned before, the alignment for text des
riptions may be impre
ise ins
enes with little dialog. To minimize this error, we need to re�ne the alignmentof senten
es near a s
ene 
ut boundary.We �rst quantify the error of our initial textual and visual 
uts relative to groundtruth using our training episodes. We assume the distribution of the timingerrors in both text and visual 
uts is Gaussian, and we learn the mean o�sets
µtext, µvid and standard deviations σtext, σvid of the text and video, respe
tively.To determine the exa
t frame of the s
ene 
ut, we de�ne energy terms for ea
hmodality. For a frame k, the text 
ut energy Etext is

Etext(k) = max
i

Pcut(wi)N (tk|(ti + µtext), σtext) (9.1)where P (wi) is the probability of a 
ut o

urring at senten
e wi and N (x|µ, σ) is aGaussian distribution evaluated at x. ti is the initial time estimate of senten
e wi,whi
h is 
hosen as the end time of the subtitle o

urring just before this senten
e.Similarly, we de�ne the video 
ut energy Evid as
Evid(k) = max

i
Ecut(Ci)N (tk|(ti + µvid), σvid) (9.2)for a dete
ted 
ut Ci at time ti.Our �nal 
uts are found by performing lo
al non-maximum suppression andthresholding on the joint energy

ETV(k) = Etext(k)Evid(k) (9.3)Figure 9.3 shows an example of the energies evaluated over some frames, where ared X denotes a ground truth 
ut.9.2.3 Lo
ation annotationFor every automati
ally dete
ted s
ene we want to generate a text phrase thatdes
ribes the lo
ation of that s
ene. Here for we use a topi
 model that usesextra
ted lo
ations from the text together with a visual similarity of the videos
enes. We start by des
ribing the lo
ation 
lassi�er.
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Figure 9.3: Example of 
ut energy over time. The blue line 
orresponds to Etext,green to Evid, and bla
k to ETV . A red X denotes a ground truth 
ut.9.2.3.1 Identifying lo
ation phrasesWe want to determine for all phrases in the text, whether they des
ribe a lo
ationor not. We manually annotate the lo
ations in a number of trans
ripts, and assigna label to all words: bLo
, iLo
, oLo
 for respe
tively the �rst word in a phrasedes
ribing a lo
ation, other words in this phrase or words outside these phrases.We want to 
ompare a generative and a dis
riminative sequential 
lassi�er andtrain a hidden Markov model or maximum entropy Markov model (Ratnaparkhi,1996) on manually annotated episodes and use these to label unseen episodes. Forevery word we generate the following features:Token The word token (e.g. �bedroom�).POS Part-of-spee
h tag of the word (e.g. �DT�).S
ene 
ut probability The binned probability of the s
ene 
ut 
lassi�er for thatsenten
e.Possessive Boolean value indi
ating whether this word is in a possessive form(e.g. �Joy
e's�).Previous token The word token that o

urs just before this word.Next token The token that o

urs just after this word.Path to top The path from the root node of the parse tree to this word (e.g.root_dep_nmod_pmod).
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 feature representing the hidden word distributionas determined by the latent words language model.Although not listed here, the hidden Markov and maximum entropy Markovmodels also take into a

ount the label of the previous word. We use these
lassi�ers to 
ompute a probability Ploc(w
i
i−n+1) for every phrase w

i
i−n+1.9.2.3.2 Latent Diri
hlet allo
ationMany s
enes do not mention the lo
ation expli
itly, although the lo
ation 
ouldbe inferred by the des
ription of other obje
ts (e.g. �fridge� in the kit
hen).Furthermore, the textual des
riptions of lo
ations 
ontain signi�
ant variation,posing various problems for learning lo
ation labels for s
enes. Problems arisefrom synonyms and polysemes, where multiple phrases are used to refer to thesame lo
ation (e.g. �
emetery� and �graveyard�), or where di�erent lo
ations arereferred to by the same phrase (e.g. �the living room� refers to the living room intwo di�erent houses).We use latent Diri
hlet allo
ation (LDA, Blei et al. (2003)) to address theseproblems. LDA learns, from a 
orpus of do
uments, probabilisti
 topi
s that
apture soft 
lusters of words that o

ur frequently together. It is a generativemodel of do
uments where the generative pro
ess is summarized as follows: for ado
ument d a multinomial mixture parameter θ is �rst sampled. Then, for ea
hword w a topi
 z is sampled from the multinomial distribution and, the word w issampled from the multinomial word distribution 
onditioned on that topi
. Theprobability of a 
olle
tion D of M do
uments is given by

P (D|α, β) =

M
∏

d=1

ˆ

P (θd|α)

(

Nd
∏

i=1

∑

zdi

P (zdi|θd)P (tdi|zdi, β)

)

dθdwhere θd is the topi
 distribution for a do
ument d, tdi is the term on position
i in do
ument d and zdi is the topi
 assigned to this term. LDA is trained onthis 
orpus by �nding the parameters α and β that maximize the likelihood ofthe model on the data. This model alleviates the aforementioned problems byassigning synonyms to the same topi
 and assigning polysemous words to multipletopi
s. Context words 
ontribute to topi
s as well and as su
h 
an help to identifythe lo
ation in 
ase of underspe
i�
ation. In our work the do
uments 
orrespondto s
enes, and we set the terms of a s
ene to all the extra
ted phrases from thetext of that s
ene.To make sure that the learned topi
s re�e
t the di�erent lo
ations and not othertopi
s in the text, we assign a weight v(wi

i−n+1) to every sequen
e of wordsw
i
i−n+1
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e the in�uen
e of phrases that are not indi
ativeof lo
ation and for
e the topi
s to fo
us on lo
ation information. The parameters
α and β are then 
hosen to optimize

P (D|α, β) =

M
∏

d=1

ˆ

P (θd|α)

(

Nd
∏

i=1

∑

zdi

P (zdi|θd)P (wi
i−n+1|zdi, β)v(wi

i−n+1)

)

dθdWe set the weight of a phrase to the probability of that phrase des
ribing a lo
ation,i.e. v(wi
i−n+1) = Ploc(w

i
i−n+1), as given by the lo
ation 
lassi�er des
ribed in theprevious se
tion.9.2.3.3 Visual similaritySome s
enes la
k text that des
ribes the lo
ation (nor des
ribes other informativeobje
ts), so their respe
tive topi
 distributions will not be useful in generating anannotation. In these 
ases, we 
an use visually similar s
enes to propagate 
riti
alwords to the ambiguous s
enes.Given two s
enes, we need to 
ompute a measure for the visual similarity of thes
ene lo
ations. In the foreground of a typi
al s
ene, there are often one or morepersons present. The ba
kground may be 
luttered, out of fo
us, sparsely detailed,and o

luded by people. Additionally, the 
amera perspe
tive may be stationary,move smoothly, or frequently 
ut away, potentially 
ausing the ba
kground toappear 
ompletely di�erent from alternate viewpoints.Persons themselves are not indi
ative of a 
ertain lo
ation, as they may appear indi�erent lo
ations. Therefore, we use the upper-body pose dete
tor of Ferrari et al.(2008) to ex
ise them from the s
enes as mu
h as possible, prior to 
omputing avisual s
ene des
riptor for the s
ene similarity measure.Visual des
ription Several methods exist for the des
ription of the visualappearan
e of a general s
ene. Lo
al or GIST features (Oliva and Torralba, 2006)are not suitable for our purpose, as we need a des
riptor that does not en
ode thes
ene in too mu
h detail, but is rather robust against e.g. ba
kgrounds being inor out of fo
us. Therefore we 
onvert the 
olors in the ba
kground of all videosto the CIELab 
olor spa
e (Wysze
ki and Styles, 1982) and 
luster them in 32
lusters using k-means 
lustering. Every frame is then des
ribed by the ratio ofits ba
kground 
olors in every 
luster.Next, we 
luster shots in ea
h s
ene into a small number of distin
t 
ameraperspe
tives, and store the mean histogram for ea
h 
luster along with the
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orresponding number of images. We use the self-tuning spe
tral 
lustering methodproposed by Zelnik-Manor and Perona (2004), whi
h handles multiple s
ales of
lusters and provides a 
onvenient way of sele
ting the optimal number of 
lusters.Visual distan
e of s
enes using EMD To estimate the distan
e between twos
enes s and s′ from the set S of all s
enes we use a nested Earth Mover's Distan
e(EMD) approa
h (Rubner et al., 2000). EMD measures the distan
e betweentwo distributions of weighted 
lusters {(c1, ω1), (c2, ω2), . . . , (cn, ωn)} by solvinga �ow optimization problem using pairwise 
osts between 
lusters. There is norequirement for ea
h distribution to have the same number of 
lusters.In our work shots are represented by weighted 
olor 
lusters and s
enes arerepresented as weighted shot 
lusters. EMD is �rst used to 
ompute a pair-wisedistan
e between shots, and these distan
es are used in a se
ond iteration of EMDto 
ompute a distan
e EMD(s, s′) between s
enes s and s′.Finally, we 
onvert these s
ene distan
es into a similarity matrix:
A(s, s′) = exp

(

−
1

λ
EMD(s, s′)2

) (9.4)where λ is a s
aling parameter determined from the training data.9.2.3.4 Updating the topi
 distributionsFor s
enes that do not 
ontain enough words indi
ative of lo
ation, the topi
distributions obtained solely from the trans
ript are inadequate, despite thereweighting. Therefore, inspired by the Mixture of Experts model (Ja
obs et al.,1991), we model an updated topi
 distribution P̃ (zi|s) as a mixture of the originaltopi
 distributions:
P̃ (zi|s) =

∑

s′∈S

π(s, s′)P (zi|s) (9.5)The mixing 
oe�
ients π(s, s′) are given by the normalized visual similarity A(s, s′)between s
enes s and s′:
π(s, s′) =

A(s, s′)
∑

s′∈S A(s, s′)
(9.6)This e�e
tively allows to propagate lo
ation labels between visually similar s
enes.9.2.4 Experiments and evaluationWe evaluate our system on 4 episodes of Bu�y the Vampire Slayer, for whi
htrans
ripts are readily available on the Internet (Twiz TV). These episodes
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ombination %P %R %F1best = bigram + W&P + position 91.71 79.48 85.16best + unigram 90.36 76.92 83.10best - bigram 88.41 74.35 80.77best + trigram 91.62 78.46 84.53best + POS 90.17 80.00 84.78best - W&P 88.70 80.51 84.40best - position 90.47 77.94 83.74Table 9.4: A

ura
y of the dis
riminative s
ene 
ut 
lassi�er for di�erent
ombinations of features. + adds a feature, − removes a feature, POS is part-of-spee
h tag, W&P is the 
on
atenated word token and part-of-spee
h tag andposition is the binned position of the senten
e in the trans
ript.provide a 
hallenging validation for our system sin
e the textual trans
ripts areunstru
tured and 
ontain a lot of variation, and the video has highly variablelighting 
onditions, frequent motion blurring and many di�erent lo
ations. Weevaluate our system on episodes 1 to 4 of season 5. On average an episode hasappr. 53 s
enes in appr. 20 di�erent lo
ations. Only a handful of these lo
ationsare shared a
ross episodes.We evaluate the di�erent parts of our system: s
ene 
ut dete
tion (se
tion9.2.4.1), lo
ation dete
tion (se
tion 9.2.4.2), and the automati
 annotations(se
tion 9.2.4.3).9.2.4.1 S
ene 
ut evaluationWe �rst perform an evaluation of the generative and dis
riminative s
ene 
ut
lassi�ers. We have manually annotated the s
ene 
uts in the trans
ripts of 4episodes and perform 4-fold 
ross validation, training the 
lassi�er on 3 episodesand testing on the remaining episode. For every 
lassi�er we �nd the optimal
ombination of features (table 9.4), whi
h was bigram+W&P+position for thedis
riminative 
lassi�er and bigram+W&P for the generative 
lassi�er. Table 9.5shows that the performan
e of the generative 
lassi�er is 
lose to the performan
eof the dis
riminative 
lassi�er. This di�ers from results in the previous 
hapters,where dis
riminative 
lassi�ers signi�
antly outperformed generative 
lassi�ers forword sense disambiguation and semanti
 role labeling. Here however we fa
e a verysmall training set (3 episodes) on whi
h generative 
lassi�ers will often performquite well, sin
e they have a smaller variation then dis
riminative 
lassi�ers whentrained on a limited number of samples (Bou
hard and Triggs, 2004).The lower re
all of the s
ene 
ut dete
tors is mainly 
aused by in
orre
t
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lassi�er %P %R %F1dis
riminative 91.71 79.48 85.16generative 91.07 78.46 84.29Table 9.5: Performan
e of the dis
riminative and generative s
ene 
ut 
lassi�ersin terms of pre
ision (P), re
all (R) and F1-measure.
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lassi�
ation of senten
es that des
ribed the a
tors moving from one lo
ation toanother, e.g. �Bu�y goes into another room...�, whi
h are also 
onsidered s
ene
uts be
ause of the lo
ation 
hange.To �nd the 
ombined s
ene 
uts in video and text, we 
ombine the probabilitiesgenerated by the text 
lassi�er with the dete
ted shot 
uts in the video asdes
ribed in se
tion 9.2.2.4. The resulting 
on�den
e values give the pre
ision-re
all 
urve in �gure 9.4. Many of the missed s
ene 
uts are in areas with eitherfew text des
riptions or dialog, leading to low 
ut probabilities or impre
ise 
uts,respe
tively. We sele
t a 
ut threshold with a high re
all, sin
e the visual updatestep provides robustness to oversegmentation.9.2.4.2 Lo
ation dete
tion evaluationIn this se
tion we evaluate lo
ation dete
tion in text. As des
ribed in se
tion9.2.3.1 we perform experiments with two 
lassi�ers, a generative hidden Markovmodel and a dis
riminative maximum entropy Markov model. For both models weperform 4-fold 
ross validation on 4 manually annotated episodes. We �rst �nd theoptimal 
ombination of features (table 9.6), whi
h was token+
ut_prob+previousword + next word+hidden word for the HMM and token + POS+ 
ut_prob +possessive + previous word + next word+hidden word for the MEMM. We see in
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ombination %P %R %F1best=token + 
ut_prob + previous + next word 68.75 75.54 71.98best - token 50.90 36.05 42.21best + POS 56.92 79.39 66.30best - 
ut_prob 59.41 75.31 66.42best - previous word 56.53 78.48 65.72best - next word 61.53 57.87 59.64best + possessive form 70.66 73.07 71.84best - hidden word 69.72 70.05 69.88Table 9.6: A

ura
y of the dis
riminative MEMM lo
ation dete
tor for di�erent
ombinations of features. + stands for adding a features, − for removing, POSfor part-of-spee
h tag and 
ut_prob for the binned s
ene 
ut probability of thesenten
e. 
lassi�er %P %R %F1HMM 68.75 75.54 71.98MEMM 81.31 61.92 70.30Table 9.7: Performan
e of the generative HMM and dis
riminative MEMMlo
ation dete
tors in terms of pre
ision (P), re
all (R) and F1-measure.table 9.7 that the HMM outperforms the MEMM. This again shows that generativemodels 
an outperform dis
riminative models when trained on small training sets.The most 
ommon error by both 
lassi�ers is in
orre
t segmentation, where onlypart of a lo
ation is 
orre
tly labeled (e.g. labeling �the house� instead of �insidethe house�). This however typi
ally results in labels that are still informative ofthe lo
ation to the end-user.9.2.4.3 Lo
ation annotation evaluationWe evaluate the 
orre
tness of the annotations generated by our system. We 
ouldevaluate the number of s
enes that have a 
orre
t annotation, but this woulddepend on the number of s
enes that are automati
ally dete
ted and would treatlong s
enes equal to short s
enes. Instead we transfer the annotation of a s
ene toevery frame in that s
ene and manually 
ount the number of frames in the videothat have been assigned a 
orre
t annotation.Table 9.8 shows the performan
e of our system on two episodes (episode 2 and3 from the 5th season). We see that for episode 2 the LDA topi
 model redu
esthe errors by 9.4%. For this episode the visual reweighting did not help. A



136 AUTOMATIC ANNOTATION OF VIDEOepisode only text text + LDA text + LDA + vision2 54.72% 58.98% 57.39%3 60.11% 65.87% 68.67%Table 9.8: Performan
e of automati
ally generated annotation as judged by ahuman annotator, ex
luding opening and 
losing 
redits.
Transcript Cut back to Anya's.  Anya 

looks conflicted.

Text only anya's

Combined anya's apartment

Transcript Various shots of Buffy fighting 

and killing vampires

Text only various

Combined a graveyardFigure 9.5: Two s
enes with a sele
tion of their video frames, des
ription inthe trans
ript and the automati
 annotations based on the text only or on the
ombined text and video.manual inspe
tion revealed that a number of in
orre
t s
ene 
uts 
onfused thevisual similarity metri
 by merging a number of s
enes in one large segment.For episode 3 we see that also here the LDA topi
 model redu
es errors with
14.4%. For this episode the visual reweighting improves the automati
 annotation,resulting in a total error redu
tion of 21.46%. We show some example s
enes in�gure 9.5. These s
enes illustrate that annotations are su

essfully transferredfrom visually similar s
enes when they are la
king in the textual des
ription.9.2.5 Related WorkLo
ations are of interest to and well-explored by several bran
hes within the
omputer vision and roboti
s 
ommunities. Generi
 s
ene type 
lassi�
ation, whi
hseeks to des
ribe the kind of lo
ation seen in an image (e.g. bea
h or street) hasbeen studied e.g. in (Vogel and S
hiele, 2007; Lazebnik et al., 2006; Vailaya et al.,2001; Blighe and O'Connor, 2008; Ni et al., 2008). Su
h approa
hes mostly relyon supervised te
hniques and large sets of annotated training data.Re
ently, some weakly supervised methods for automati
 video annotation havebeen proposed. Some of these methods fo
us on dete
ting similar lo
ations, su
has S
ha�alitzky and Zisserman (2003), who develop a model that retrieves imagesof a parti
ular lo
ation based on wide baseline mat
hing te
hniques, Vailayaet al. (2001) who 
lusters images in 
oarse 
ategories su
h as 
ity/lands
ape,forest/mountain, S
hro� et al. (2009) represent frames with texton histograms and
luster these in a number of lo
ations with single-link agglomorative 
lustering, and



SCENE LOCATION ANNOTATION 137Héritier et al. (2007) who use latent aspe
t models to identify dis
riminative andoften reo

urring parts of lo
ations using SIFT features, whi
h are then labeledmanually. These methods only 
reate 
lusters of shots in the same lo
ation anddo not attempt to assign a label or textual des
ription to these 
lusters.Other resear
hers fo
us on s
ene segmentation e.g. Zhai and Shah (2005) usea purely visual Markov 
hain Monte Carlo approa
h and Chen et al. (2008)use a time-
onstrained 
lustering algorithm. These methods do not attempt to
lassify the obtained s
enes in any way. Zhu and Liu (2009) study the problem ofsegmentation into s
enes, and 
lassify the obtained s
enes into either 
onversation,suspense, or a
tion s
enes, based on audio and video and using heuristi
 rules forthe a
tual 
lassi�
ation. Neither of these works explores the use of fan s
ripts toobtain lo
ation annotations automati
ally.Other authors have looked into the use of readily available textual annotation forTV and movie footage to learn to annotate in a weakly supervised manner aswell. In parti
ular, Cour et al. (2008) propose a uni�ed generative model thatintegrates s
ene segmentation, s
ript alignment, and shot threading. Everinghamet al. (2006) use fan s
ripts aligned to the video data based on the subtitles tothen identify the 
ast in a soap series. Laptev et al. exploit s
ripts for a
tionre
ognition in Hollywood movies, using a supervised text 
lassi�er (Laptev et al.,2008) and using a kernel-based dis
riminative 
lustering algorithm to over
omeproblems with ina

urate alignment between video and text (Du
henne et al.,2009). Finally Marszaªek et al. rank video segments based on a
tions, usingmining te
hniques (Marszaªek et al., 2009). They also mine lo
ation names, butusing s
ripts that are way more stru
tured than ours and not fo
using on spe
i�
lo
ations but rather s
ene types.In our work, we use a purely textual topi
 model (i.e. LDA (Blei et al., 2003)).Other people have investigated the use of 
ross-modal topi
 models, 
ombiningvisual and textual information, e.g. (Blei and Jordan, 2003; Monay and Gatti
a-Perez, 2003; Li et al., 2009), in the 
ontext of automati
 image annotation.However, it turns out it is relatively di�
ult to balan
e the 
ontributions of bothmodalities. Moreover, in our appli
ation, text and visual information are onlyweakly linked, with often 
omplementary information present in only one of thetwo modalities. Hen
e, we de
ided to use the visual information in a postpro
essingstep to the textual topi
 model, updating the textual topi
 distributions based onvisual similarity. This is, in some sense, similar to the tag propagation proposedby Guillaumin et al. (2009).



138 AUTOMATIC ANNOTATION OF VIDEO9.3 Con
lusions of this 
hapterIn this 
hapter we have developed information extra
tion methods that analyzetextual des
riptions of a video. In the �rst se
tion we developed a SRL 
lassi�erfor visual verbs. We have shown that we 
an apply the model developed in earlier
hapters to new frame and role de�nitions and to new datasets. This 
lassi�er wassu

essfully used to learn asso
iations between des
riptions and images for personsand their pose.In the se
ond se
tion we developed a novel multimodal approa
h to weaklysupervised automati
 annotation of lo
ations from video and text. We have �rstdes
ribed how s
ene 
uts are dete
ted by 
ombining a s
ene 
ut dete
tor in thetext with a shot 
ut dete
tor in the video. The 
ombination took into a

ountthe approximate alignment of the two media. We have then developed a novelmethod for the dete
tion of lo
ations in the text and 
ombined this model withvisually reweighted LDA, whi
h allowed the propagation of lo
ations to visuallysimilar s
enes. This system was tested on a 
hallenging a
tion series with manyinfrequent lo
ations, where the trans
ripts often do not des
ribe the lo
ations. Theevaluation showed that in many 
ases we were able to dete
t a lo
ation present inthe des
riptions, and that if the text was la
king a des
ription we 
ould propagatean annotation from a similar s
ene, where both LDA and the visual similarity hada positive 
ontribution, ignoring the 
ase where the visual similarity was 
onfusedby a in
orre
t s
ene segmentation.In the future we would like to exploit a 
ombination of LDA and the latent wordslanguage model. Where LDA is very good at learning global topi
s for a text,and learning words that share the same general topi
s, the latent words languagemodel is very good in learning synonyms and similar words in a 
ertain spe
i�

ontext. A 
ombination of these methods 
ould result in even more pre
ise wordsimilarities, that take into a

ount both lo
al (the 
ontext) and global (the entiredo
ument) information. In this respe
t we mention the work by Gri�ths et al.(2005) who learns simultaneously synta
ti
 
lasses and semanti
 LDA-style topi
s.However in this work the words belong to either a synta
ti
 
lass or to a topi
,while we are interested in a method that would 
ombine these in a joint model.
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Chapter 10Con
lusions
Summary and 
ontributionsIn this thesis we performed resear
h on a number of topi
s related to informationextra
tion from texts. Our main interest was the study of weakly supervisedmethods that use knowledge learned from unlabeled data to improve theperforman
e of supervised models. We �rst dis
ussed this in a uni-modalsetting, where a set of labeled text is augmented with a large body of unlabeledtexts to improve the a

ura
y of information extra
tion methods on texts, andthen dis
ussed this in a multimodal setting, where information extra
ted fromdes
riptive texts was used to improve the a

ura
y of image analysis methods.Our text started by outlining the 
ontext of our resear
h in 
hapter 1, whi
hwas expanded in 
hapter 2 with a number of examples of popular informationextra
tion tasks and with an extensive introdu
tion to dire
ted Bayesian networks.In part I we applied today's standard methods for supervised informationextra
tion to two tasks. Chapter 3 des
ribed a supervised method to word sensedisambiguation and 
hapter 4 des
ribed a supervised method to semanti
 rolelabeling. Both methods used well-studied features and models, and a
hieved state-of-the-art results. These results where however not fully satisfying, espe
iallytaking into a

ount the large amount of labour needed to 
reate the large manuallyannotated datasets used for training. We argued that these supervised modelssu�ered from ambiguity and underspe
i�
ation 
hara
teristi
 to natural language.In part II we addressed these problems with uni-modal weakly supervised learning,where a set of annotated texts was augmented with a large body of unlabeled texts.In 
hapter 5 we proposed a novel model for semi-supervised learning for semanti
140



CONCLUSIONS 141role labeling. We used hidden variables in the Bayesian models to represent thelabels of the unlabeled examples and estimated the values of these variables withGibbs sampling (for the generative model) or Metropolis-Hastings sampling (forthe dis
riminative model). We observed however how the performan
e of thesemodels deteriorated when using more unlabeled examples. We have then proposeda generative multiple-mixtures model where semanti
 roles were modeled witha number of mixture 
omponents that gave the model more expressive powerto model natural language. This model was more robust to large numbers ofunlabeled data, but did not outperform the supervised model.We turned to a di�erent approa
h in 
hapters 6 and 7. In 
hapter 6 weproposed the latent words language model. This model is a novel model ofnatural language that learns word similarities to redu
e the sparseness problemsasso
iated with traditional n-gram models. Be
ause of the large number of hiddenvariables, traditional methods for training and inferen
e (i.e. the Baum-Wel
halgorithm) are not tra
table for this model. We have developed a new methodfor inferen
e, termed the forward-forward beam sear
h. This method was alsoused when training this model and when using it to predi
t the probability ofunseen texts. Experiments showed that this model outperformed both standard n-gram smoothing models and 
lass-based language models. The automati
 learnedword similarities in this model were used in 
hapter 7 we improve the modelsfor word sense disambiguation and semanti
 role labeling. We dis
ussed variousmethods to in
orporate this knowledge in the supervised models and found that anapproa
h where the hidden words were used as probabilisti
 features resulted in animprovement over supervised models without these features. These improvementswere largest with small training sets, showing that this method redu
es thedependen
y of the supervised models on large annotated datasets. This methodhad the additional advantage that it 
an be easily in
orporated in other supervisedinformation extra
tion and natural language pro
essing methods.In part III we turned to the problem of multimodal weakly supervised learning.In this part we dis
ussed various methods to analyze text des
ribing the 
ontentof an image or video. We started in 
hapter 8 by des
ribing the appearan
e model.This model 
ombined the salien
e and the visualness measure to sele
t with higha

ura
y the entities from the text that are likely to o

ur in the image. To
ompute the salien
e (i.e. the importan
e of an entity in the text) we 
ombinedan analysis of the dis
ourse of the entire text with a synta
ti
 analysis of theindividual senten
es. The visualness measure (i.e. the extent to whi
h an theentity 
an be per
eived visually) was 
omputed with a novel method that uses theWordNet hierar
hy together with a number of visual and non-visual seed synsets.We used this model in two appli
ations, to align names in the text with fa
es inthe image and to perform a textual image sear
h. This model was also extendedto in
lude visual attributes, where the visualness of these attributes was learnedfrom a 
orpus with image des
riptions.



142 CONCLUSIONSChapter 9 dis
ussed the automati
 annotation of videos. We 
onsidered two typesof annotations, visual semanti
 roles and s
ene lo
ations. For the visual semanti
roles we applied our existing semanti
 role labeling system to a new dataset and anew set of roles, showing that the system 
an straightforwardly be applied to thesenew settings. To annotate s
enes in a video with their lo
ations, we developed anovel method that 
ombined information in the text with information in the video.This method 
onsisted of a s
ene 
ut dete
tor that 
ombined a text 
lassi�er witha shot 
ut dete
tor, and of a lo
ation dete
tor based on a hidden Markov model.To propagate the dis
overed lo
ations to visually and textually similar s
enes weproposed a topi
 model where the topi
s where reweighted with visual similarity.Throughout our work we proposed and evaluated di�erent types of features forevery information extra
tion task. We also 
onsistently 
ompared generativeand dis
riminative models. This showed that dis
riminative models outperformgenerative models when large sets of training are available (e.g. word sensedisambiguation, semanti
 role labeling), but that generative models 
an havesurprisingly high performan
e on small training sets, outperforming dis
riminativemodels (e.g. s
ene 
ut 
lassi�
ation, lo
ation dete
tion).To summarize, we list all novel models and methods that have been developed inthis thesis:
• A semi-supervised model for semanti
 role labeling.
• A semi-supervised multiple-mixtures model for semanti
 role labeling.
• The relative dis
ounted Kneser-Ney smoothing method.
• The latent words language model (LWLM).
• A method that uses the LWLM for weakly supervised word sense disambigua-tion.
• A method that uses the LWLM for weakly supervised semanti
 role labeling.
• A method to predi
t the entities present in an image based on an analysisof the des
riptive text, 
omprising� A method to 
ompute the salien
e of entities in a text.� A method to 
ompute the visualness of entities from the WordNetdi
tionary.
• A method for the dete
ting and labeling arguments of visual verbs for theannotation of a
tions in videos.
• A method for the automati
 annotation of lo
ations of s
enes in a video,
omprising



CONCLUSIONS 143� A multimodal s
ene 
ut dete
tor for videos.� A method for the automati
 dete
tion of lo
ation phrases in the text.� A multimodal method to propagate lo
ation phrases to similar s
enes.These models were all tested on annotated data (models for 
lassi�
ation orannotation) or unseen texts (language models) and 
ompared to state-of-the-artmodels where available.Lessons learnedWe started our work with the observation that the limited performan
e ofsupervised models for many information extra
tion tasks is due to the largevariation and ambiguity of natural language. We then set o� with the aimof �nding a method that would leverage the information present in unlabeledexamples. However simple to 
on
eive intuitively, this task was more di�
ultthan initially anti
ipated. A method for semi-supervised learning with hiddenvariables was found not to be suited for this task. A se
ond method based on anadvan
ed language model, was more su

essful. We reported signi�
ant gains inperforman
e when training the models on a limited training set. On larger trainingsets however only limited gains were a
hieved. At this moment it is un
lear whethera further improvement requires improving the language model or the method usedto in
orporate results of the language model in an information extra
tion method.The outstanding performan
e of the language model on predi
ting unseen textsseem to point to the latter.We are 
onvin
ed that our resear
h has pointed to some interesting dire
tions forfuture resear
h, although we are probably still only s
rat
hing the surfa
e of the fullpotential of weakly supervised models. Resear
h on this topi
 will likely 
ontinuefor some years to 
ome, sin
e also after two de
ades no 
lear single best methodhas been dis
overed that results in signi�
ant gains on a number of informationextra
tion tasks.From our resear
h on weakly supervised multimodal methods we learned that agood method for information extra
tion is indispensable when trying to 
ombinethe two media, and that it is possible to extra
t detailed annotations of images andvideo from des
riptive texts using appropriate information extra
tion methods.Future workOur dire
tions of future work 
an be divided among a number of topi
s. Firstwe would like to investigate two extensions to the latent words language model:



144 CONCLUSIONS(1) learn similarities between phrases instead of between words, sin
e the meaningof multi-word expressions (e.g. �United Nations�, �tou
h down�) 
an often notbe determined from the meaning of the individual words. This would involve adynami
 method to split a sequen
e of words into individual phrases. This 
ouldbe performed with the inside-outside algorithm (Lari and Young, 1990), althoughit will also have to be adapted for the large number of hidden variables. This 
ouldbe performed with te
hniques similar to the ones we used to adapt the forward-ba
kward algorithm for hidden Markov models. (2) We would like to extend theLWLM to take into a

ount all words in the 
ontext, and not only the words ina window of length n. This would improve the synonyms learned for a word in a
ertain 
ontext sin
e the general topi
 or domain of a text in�uen
es the relevantsynonyms. In this 
ontext we would like to investigate a 
ombination of the LWLMwith latent Diri
hlet allo
ation [Blei et al., 2003℄, sin
e this model has proven itsadequa
y for modeling do
ument level topi
s.As des
ribed above we do not belief that the full potential of weakly supervisedmodels has been rea
hed. More spe
i�
ally we think that more resear
h onmethods to use the latent words language model for supervised informationextra
tion still has a large potential. Ideally these method would be su�
ientlygeneral to also be appli
able to other language models, sin
e intuitively anyknowledge of the stru
ture of language should be useful for an automati
 analysisof this language.In our se
ond area of resear
h, multimodal image annotation using des
riptivetexts, many advan
es are still possible. We would like to extend the appearan
emodel with a method that 
aptures 
ues in the text (e.g. �George Bush (third fromleft)�) to further strengthen the predi
tion of entities likely to be seen in the image.Ideally these 
ues would be learned automati
ally without relying on an annotated
orpus to be independent of a 
ertain 
orpus or domain. We would also like to
ombine the appearan
e model with the semanti
 role labeling system used forvisual verbs. For example to identify obje
ts as arguments to these verbs one 
anin
orporate the visualness measure, sin
e this already gives a strong indi
ation ofobje
ts that are likely to appear in the video. We already outlined one su

essfulappli
ation of the dete
ted a
tions on news images, but would like to extend thisin the future to a larger number of a
tions in real life video. Finally we think thatthe des
ribed method for automati
 annotation of lo
ations in s
enes des
ribes aninteresting framework that 
an be adapted to other types of annotations, su
h asfor example to the annotation of stories in news broad
asts. A di�erent type ofannotation would only require to retrain the lo
ation dete
tor on a new annotations(e.g. to extra
t headlines of news stories) and would possibly require di�erent typesof features extra
ted from the video, depending of the entities of interest.
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Appendix ADistributed 
omputingar
hite
tureWe have developed a distributed 
omputing infrastru
ture in Java to perform atask in parallel on many 
omputers. This infrastru
ture is robust, very easy to set-up and downloads automati
ally exe
utable �les and datasets and results resultsand ex
eptions to the 
ommanding 
lient. Furthermore it has been implementedfor performan
e, with data 
a
hing, load balan
ing and automati
ally sele
tion ofthe fastest 
omputing 
lients. It has also been designed with the expli
it goal ofbeing easy to use in Java programs.A.1 UsageWe have opted for the following design: a 
ommanding 
lient sends a numberof jobs to the job server. The job server sends these jobs to one or multiple
omputing 
lients that exe
ute every job in parallel. After every job has beenexe
uted, the results are send ba
k to the job server who sends them in turn sendsto the 
ommanding 
lient. We will des
ribe the usage of our framework a bit morein detailRemote jobThe basi
 unit of work is the remote job. To 
reate a new type of jobs, theuser 
reates a sub
lass of the 
lass RemoteJob and implements the abstra
tmethod void exe
ute(ComputingClient 
omputingClient). In design terms166



EXECUTION OF A JOB 167this method would be 
alled a hot-spot of our framework. Implementing thismethod, and making sure that the job and the data used by the job are serializable(to be send over the network), is the only work that need to be performed by auser of this framework. All other aspe
ts are handled automati
ally.Commanding 
lientThe 
lass that is used by the user to send and re
eive jobs, is the 
lassCommandingClient. First a new obje
t of this 
lass is 
reated using the 
onstru
torwith the ip-address, or the dns names of the job server. Then a number ofjobs are sent to the server with the method int sendJobToServer(RemoteJob).The user then waits for the results of these jobs with the methods JobWrapperwaitForJob(int jobId) or JobWrapper waitForAnyJob(). These methods willblo
k until either the job with the given id is re
eived, or any job is re
eived. Bothmethods return a JobWrapper obje
t that 
ontains the job, any data generated bythe job, and ex
eptions thrown by the job, if any. The 
lass CommandingClient isthe only 
lass of the framework that is used by an end-user.A.2 Exe
ution of a jobOn
e the user has passed a job to the method int sendJobToServer(RemoteJob)of the 
lass CommandingClient, the job is handled by the framework in a way thatis 
ompletely hidden from the end-user. In this se
tion we will see this pro
essin a bit more detail. First the 
lass int sendJobToServer(RemoteJob) serializesthe job, i.e. it 
onverts the job and any data it referen
es to in a sequen
e ofbytes. For this is uses the standard Obje
tOutputStream 
lass in the Java API.This sequen
e of bytes is then 
ompressed with the standard ZipOutputStream
lass. On
e the job (and any data it referen
es) is 
ompressed, it is send to thejob server. The job server will try to �nd a 
omputing 
lient that is not exe
utinga job. If multiple 
omputing 
lients are available, it will send the job to the
lient with lowest average exe
ution time per job. Although not exa
t, sin
e thetime taken by di�erent jobs di�ers, in reality usually many similar jobs are sendto the server, and this heuristi
 is usually able to sele
t the fastest 
omputing
lient available. If all 
omputing 
lients are o

upied it stores the job until a
omputing 
lient be
omes available. On
e the job arrives at a 
omputing 
lient,it is unpa
ked (using ZipInputStream and Obje
tInputStream), and its voidexe
ute(ComputingClient 
omputingClient)method is exe
uted. The job willnow perform the tasks implemented by the user, until this method �nishes. Thejob is then again serialized and 
ompressed, together with data that was generatedduring the exe
ution (if any). The 
omputing 
lient then passes the job to the jobserver who passes it to the 
ommanding 
lient. The end-user will then re
eive the



168 DISTRIBUTED COMPUTING ARCHITECTUREjob through either the JobWrapper waitForJob(int jobId) or the JobWrapperwaitForAnyJob() method.A.3 Automati
 
lass loadingWhen a remote job is exe
uted on the 
omputing 
lient, it will be most likelymake use of 
lasses other than the remote job (e.g. datastru
tures to hold results,methods designed for 
omplex mathemati
al operations, ...). If these 
lasses arenot within the standard Java API, the virtual ma
hine on the 
omputing 
lient willnot know them. A possible solution would be to for
e the end-user to 
olle
t all thene
essary 
lass �les in a library (e.g. a jar �le) that is stored on every 
omputing
lient. This solution would require the end-user to make a list of all 
lass-�lesemployed (whi
h is a non-trivial task for all but the most simple programs), to
olle
t them and to store them in a library.We have 
hosen for a more user-friendly and �exible solution. In Java, when anobje
t of a 
ertain 
lass is 
reated, the virtual ma
hine loads the 
lass de�nitionthrough a 
lass loader. The standard 
lass loader in Java is designed to look for
lasses in the 
lass path on the �le system. In our ar
hite
ture we use a new 
lassloader on the 
omputing 
lient. This loader is implemented as a sub
lass of thestandard 
lass loader, and it implements an extra method whi
h 
he
ks whetherthe needed 
lass �les are present in the 
lass path. If they are not found, it sends amessage to the job server asking for this 
lass. The job server passes this messageto the 
orre
t 
ommanding 
lient, whi
h lo
ates the 
lass de�nition on its 
lasspath, serializes it, and sends it to the job server who passes it on to the 
omputing
lient. The 
omputing 
lient deserializes the 
lass de�nition and adds it to the
lasses know by the virtual ma
hine.A.4 RobustnessWe wanted to make sure that the distributed system is robust against 
omputerfailures. We have implemented a simple s
heme that prote
ts the systems againsfailures of 
omputing 
lients. When the job server sends a job to a 
omputing
lient, it remembers the job that was send to this 
lient. If for some reason the
onne
tion with the 
omputing 
lient is lost (e.g. due to a network failure), the jobis passed to a di�erent 
omputing 
lient. Another risk is when a 
omputing 
lientis overloaded and takes a very long time to �nish a job, although otherwise rea
tingnormally. As a pre
aution to this 
ase we send a job to di�erent 
omputing 
lients(max 3), if other 
omputing 
lients are idle and no other jobs need to be exe
uted.From the moment one of the 
omputing 
lients returns the exe
uted job, the jobson the other 
lients are terminated.



SECURITY 169A.5 Se
urityBe
ause the des
ribed ar
hite
ture allows for the exe
uting of arbitrary Java 
odeon the 
omputing 
lients, se
urity is a serious 
on
ern. We have implemented asimple but e�e
tive se
urity proto
ol based on a SSL 
onne
tion with a privateand publi
 key pair. The job server holds the private part of the key. Both the
omputing and 
ommanding 
lients have a 
opy of publi
 part of the key. When a
lient 
onne
ts to the server the publi
 key is 
he
ked against the private part andif mat
hed, the 
onne
tion is established. If the publi
 key does not mat
h, or nopubli
 key is o�ered, the 
onne
tion is immediately terminated. On
e a 
onne
tionis made, all data send on this 
onne
tion is SSL-en
rypted, thus o�ering a reliableprote
tion against sni�ng or a man-in-the-middle atta
k. As a further se
uritymeasure the IP addresses of the 
ommanding 
lients are logged, together withthe number of exe
uted jobs and the 
omputing 
lients on whi
h these jobs wereexe
uted.An important weakness in this design is the distribution of the publi
 key: every
omputer exe
uting a 
omputing or 
ommanding 
lient needs a 
opy of this key. Ifone of this 
lients however is 
ompromised, and a mali
ious party obtains a 
opyof the publi
 key, he gains full a

ess to the system and thus to all 
omputing
lients.A.6 Future workWe have build this distributed system mainly with the goal of being able to run thelatent words language model in parallel on a large number of 
omputers. Althoughwe have also used the framework for several other distributed tasks, it has neverbeen tested by users outside our resear
h group. Questions that are not fullyanswered at this moment are: how many 
ommanding 
lients 
an be the job serverhandle before be
oming a bottlene
k? How well 
an it 
ope with jobs that needlarge amounts of data? How se
ure is it against a targeted atta
k? How well doesthe system perform on di�erent 
omputer ar
hite
tures (e.g. 
luster 
omputers,multiple pro
essors, shared memory ar
hite
tures, ...)?. We think that the mostimportant weakness in the design at this moment is the hanlding of jobs of di�erent
ommanding 
lients. If di�erent 
ommanding 
lients exe
ute large amounts of jobs,the jobs are send to the 
omputing 
lients on a �rst-
ome, �rst-serve basis. Thishowever does not take into a

ount the expe
ted exe
ution time of a job, or theamount of jobs that are already being exe
uted for a parti
ular 
ommanding 
lient.We plan to address this problem in future work.



Appendix BIterative line sear
hFor the latent words language model we have a 
olle
tion of v smoothingparameters γ = [γ1, ..., γv] with lower bounds l = [l1, ..., lv] and upper bounds
u = [u1, ..., uv]. We would like to sele
t values for these parameters su
h thatthe model assigns maximal probability to a 
olle
tion of unseen texts. In thisse
tion we develop a simple algorithm that �nds the values for some parameters
γ = [γ1, ..., γv] so that they represent a (possibly lo
al) maximum for someobje
tive fun
tion f(.). Note that this algorithm is general in the sen
e thatit 
an be used to optimize any obje
tive fun
tion f(.) and not only the probabilityof unseen text a

ording to a language model.The algorithm is shown in listing 4. This algorithm iterates over all the parametersas long as an improvement was made in the previous iteration (stored in variable
G). In every iteration we test for every parameter γi whether an improvement 
anbe made by in
reasing or de
reasing this parameter with ǫ, taking into a

ount thelower and upper bounds. If an improvement 
an be made, the parameter is set tothis new value. We then try the next parameter and so on. Sin
e we improve theobje
tive fun
tion f(.) in every step we are guaranteed to �nd a (lo
al) maximum.Although this algorithm is very simple, we found that the number of steps neededto �nd the optimal smoothing parameters for the latent words language modelwas su�
iently low (usually around 5 iterations over all the variables), given aproper value for ǫ was 
hosen. Of 
ourse more 
omplex optimization methods (e.g.quasi-Newton methods), would most likely 
onverge even faster.

170
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Algorithm 4 .Require: γ = [γ1, ..., γv], l = [l1, ..., lv], u = [u1, ..., uv] and f(.)1: G ⇐ true2: max ⇐ f(γ)3: while G do4: G ⇐ false5: for i = 1 to v do6: γi ⇐ γi − ǫ7: if γi > li then8: vall = f(γ)9: else10: vall = −∞11: end if12: γi ⇐ γi + 2ǫ13: if γi < ui then14: valr = f(γ)15: else16: valr = −∞17: end if18: if vall > valr AND vall > max then19: γi ⇐ γi − 2ǫ20: max ⇐ vall21: G ⇐ true22: else if valr > vall AND valr > max then23: max ⇐ valr24: G ⇐ true25: else26: γi ⇐ γi − ǫ27: end if28: end for29: end while



Appendix CComputation of expe
tedvalue of sequen
es of hiddenwordsIn se
tion 6.2.2 we have explained how we 
ompute the expe
ted value of a hiddenword at a parti
ular position as
P (hj |wtrain, Cτ ) ≃

∑

h
j+δ

j+δ−n+2
γ′(hj+δ

j+δ−n+2, hj)

P (wtrain|Cτ )where the values γ′(hj+δ
j+δ−n+2, hj) were de�ned as the joint probability of observingthe words w

i
1, the sequen
e h

i
i−n+2 and the hidden variable hj . This value was
omputed by �rst passing the forward messages α(hi

i−n+2) up to position j, andthen passing the message γ′(hj+δ
j+δ−n+2, hj) for δ more positions. In this se
tion wewill show how we 
ompute P (hj

j−n+2|wtrain, Cτ , γτ ), the probability of observingsequen
e h
j
j−n+2 given observed words wtest. We again de�ne a new forwardprobability γ(hi

i−n+2,h
j
j−n+2) whi
h is the joint probability of observing the words

w
i
1, the sequen
e h

i
i−n+2 and the sequen
e h

j
j−n+2. This value is de�ned for i ≥ jand is given by

γ(hi
i−n+2,h

j
j−n+2) =

{

P (wi|hi)
∑

hi−n+1
α(hi−1

i−n+1)P (hi|h
i−1
i−n+1) if i = j

P (wi|hi)
∑

hi−n+1
γ(hi−1

i−n+1,h
j
j−n+2)P (hi|h

i−1
i−n+1) if i > j172



COMPUTATION OF EXPECTED VALUE OF SEQUENCES OF HIDDEN WORDS 173We 
an interpret γ(hi
i−n+2,h

j
j−n+2) as a series of messages, where for everydi�erent value of h

j
j−n+2, a series of messages γ(hi

i−n+2,h
j
j−n+2) is passed fromposition j to the end of the sequen
e. A trimmed version of this variable is de�nedas

γ′(hi
i−n+2,h

j
j−n+2) =

{

σi−n+1P (wi|hi)
∑

hi−n+1
trim(α′(hi−1

i−n+1))P (hi|h
i−1
i−n+1) if i

σi−n+1P (wi|hi)
∑

hi−n+1
trim(γ′(hi−1

i−n+1,h
j
j−n+2))P (hi|h

i−1
i−n+1) if iThe sum in this equation has time 
omplexity O(b|V |) and sorting the values has
omplexity O(b|V | log(b|V |)). Doing so for every position in the sequen
e resultsin a time 
omplexity of O(Nu × [b|V | log(b|V |)]). The �nal probability is then
omputed as

P (hj
j−n+2|wtrain, Cτ ) ≃

∑

h
Nu
Nu−n+2

γ′(hNu

Nu−n+2,h
j
j−n+2)

P (wtrain|Cτ )This value 
an again be limited to the δ positions after j to redu
e the time
omplexity
P (hj

j−n+2|w
Nt

1 , Cτ ) ≃ P (hj
j−n+2|w

j+δ
1 , Cτ )whi
h then results in

P (hj
j−n+2|wtrain, Cτ ) ≃

∑

h
j+δ

j+δ−n+2
γ′(hj+δ

j+δ−n+2,h
j
j−n+2)

P (wtrain|Cτ )Sin
e we need to 
ompute this probability for every position in the sequen
e, thetotal time 
omplexity is O(Nu × (1 + δ)× (b|V |+ b|V | log(b|V |)). We see how thistime 
omplexity is equivalent with the time 
omplexity to 
ompute the expe
tedvalue for the individual hidden words. In fa
t, the entire algorithm is almostequivalent.


